Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A parameter-free optimization technique is applied in Quasi-Newton’s method for solving unconstrained multiobjective optimization problems. The components of the Hessian matrix are constructed using q-derivative, which is positive definite at every iteration. The step-length is computed by an Armijo-like rule which is responsible to escape the point from local minimum to global minimum at every iteration due to q-derivative. Further, the rate of convergence is proved as a superlinear in a local neighborhood of a minimum point based on q-derivative. Finally, the numerical experiments show better performance.

Details

Title
On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems
Author
Lai, Kin Keung; Mishra, Shashi Kant; Bhagwat Ram
First page
616
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2392862854
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.