Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The urban rainstorm can evolve into a serious emergency, generally characterized by high complexity, uncertainty, and time pressure. It is often difficult for individuals to find the optimal response strategy due to limited information and time constraints. Therefore, the classical decision-making method based on the “infinite rationality” assumption is sometimes challenging to reflect the reality. Based on the recognition-primed decision (RPD) model, a dynamic RPD (D-RPD) model is proposed in this paper. The D-RPD model assumes that decision-makers can gain experience in the escaping process, and the risk perception of rainstorm disasters can be regarded as a Markov process. The experience of recent attempts would contribute more in decision-making. We design the agent according to the D-RPD model, and employ a multi-agent system (MAS) to simulate individuals’ decisions in the context of a rainstorm. Our results show that experience helps individuals to perform better when they escape in the rainstorm. Recency acts as a one of the key elements in escaping decision making. We also find that filling the information gap between individuals and real-time disaster would help individuals to perform well, especially when individuals tend to avoid extreme decisions.

Details

Title
Multi-Agent Simulation of Individuals’ Escape in the Urban Rainstorm Context Based on Dynamic Recognition-Primed Decision Model
Author
Yang, Qing 1 ; Xu, Sun 2 ; Liu, Xingxing 1 ; Wang, Jinmei 2 

 School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China; [email protected] 
 School of Management, Wuhan University of Technology, Wuhan 430070, China; [email protected] (X.S.); [email protected] (J.W.) 
First page
1190
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2394766724
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.