Full text

Turn on search term navigation

Copyright © 2020 Yujiao Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Magnetic nanoparticle-mediated isolation (MMI) is a new method for isolating active functional microbes from complex microorganisms without substrate labeling. In this study, the composition and properties of magnetic nanoparticles (MNPs) were characterized by a number of techniques, indicating that MNPs have characteristics such as microinterfaces and can be efficiently fixed on the surface of microbial cells. It also introduced the MMI technology in activated sludge after stable long-term treatment. With further addition of promotor carbon sources, the enrichment of the functional nitrogen degraders in MMI was significantly higher than in samples without MNPs, showing the advantages of MMI in identifying the active degraders. Redundancy analysis (RDA) also showed that the functional nitrogen degraders such as Comamonadaceae_unclassified and Thiobacillus absolutely dominated in situ ammonia degradation, and the change in dominant genera had the same trend as the degradation rate of ammonia nitrogen. In the magnetically functionalized system, the separated functional nitrogen degraders significantly improved ammonia nitrogen degradation efficiency, making it basically stable at more than 80%, up to 91.6%. These results prove that the complex flora created after the addition of MNPs is more adaptable to newly introduced pollutants, and MMI is a powerful tool for studying pollutant-degrading microorganisms under in situ conditions.

Details

Title
Separating and Characterizing Functional Nitrogen Degraders via Magnetic Nanoparticle-Mediated Isolation
Author
Sun, Yujiao  VIAFID ORCID Logo  ; Yin, Meng; Zheng, Danyang; Wang, Lei; Zhao, Xiaohui; Li, Jie
Editor
Ibrahim H Alsohaimi
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
20909063
e-ISSN
20909071
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2394775023
Copyright
Copyright © 2020 Yujiao Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/