It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Present contribution is concerned with the construction and application of a numerical method for the fluid flow problem over a linearly stretching surface with the modification of standard Gradient descent Algorithm to solve the resulted difference equation. The flow problem is constructed using continuity, and Navier Stoke equations and these PDEs are further converted into boundary value problem by applying suitable similarity transformations. A central finite difference method is proposed that gives third-order accuracy using three grid points. The stability conditions of the present proposed method using a Gauss-Seidel iterative procedure is found using VonNeumann stability criteria and order of the finite difference method is proved by applying the Taylor series on the discretised equation. The comparison of the presently modified optimisation algorithm with the Gauss-Seidel iterative method and standard Newton’s method in optimisation is also made. It can be concluded that the presently modified optimisation Algorithm takes a few iterations to converge with a small value of the parameter contained in it compared with the standard descent algorithm that may take millions of iterations to converge. The present modification of the steepest descent method converges faster than Gauss-Seidel method and standard steepest descent method, and it may also overcome the deficiency of singular hessian arise in Newton’s method for some of the cases that may arise in optimisation problem(s).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer