Full text

Turn on search term navigation

© 2020 Potluri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ebola epidemics constitute serious public health emergencies. Multiple vaccines are under development to prevent these epidemics and avoid the associated morbidity and mortality. Assessing the potential impact of these vaccines on morbidity and mortality of Ebola is essential for devising prevention strategies. A mean-field compartmental stochastic model was developed for this purpose and validated by simulating the 2014 Sierra Leone epidemic. We assessed the impacts of prophylactic vaccination of healthcare workers (HCW) both alone and in combination with the vaccination of the general population (entire susceptible population other than HCW). The model simulated 8,706 (95% confidence intervals [CI]: 478–21,942) cases and 3,575 (95%CI: 179–9,031) deaths in Sierra Leone, in line with WHO-reported statistics for the 2014 epidemic (8,704 cases and 3,587 deaths). Relative to this base case, the model then estimated that prophylactic vaccination of only 10% of HCW will avert 12% (95% CI: 6%-14%) of overall cases and deaths, while vaccination of 30% of HCW will avert 34% of overall cases (95% CI: 30%-64%) and deaths (95% CI: 30%-65%). Prophylactic vaccination of 1% and 5% of the general population in addition to vaccinating 30% of HCW was estimated to result in reduction in cases by 44% (95% CI: 39%-61%) and 72% (95% CI: 68%-84%) respectively, and deaths by 45% (95% CI: 40%-61%) and 74% (95% CI: 70%-85%) respectively. Prophylactic vaccination of even small proportions of HCW is estimated to significantly reduce incidence of Ebola and associated mortality. The effect is greatly enhanced by the additional vaccination even of small percentages of the general population. These findings could be used to inform the planning of prevention strategies.

Details

Title
Impact of prophylactic vaccination strategies on Ebola virus transmission: A modeling analysis
Author
Potluri, Ravi; Kumar, Amit; Maheshwari, Vikalp; Smith, Charlie; Valerie Oriol Mathieu; Luhn, Kerstin; Callendret, Benoit; Bhandari, Hitesh
First page
e0230406
Section
Research Article
Publication year
2020
Publication date
Apr 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2395248910
Copyright
© 2020 Potluri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.