Abstract

Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.

Topological quasiparticle with higher Chern number is promising to realize large-quantized photogalvanic effect. Here, the authors observe splitting of both topological surface and bulk states in a chiral crystal PtGa, suggesting multifold fermions with a maximal Chern number of ±4.

Details

Title
Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa
Author
Yao Mengyu 1   VIAFID ORCID Logo  ; Manna Kaustuv 1   VIAFID ORCID Logo  ; Yang, Qun 1 ; Fedorov, Alexander 2 ; Voroshnin Vladimir 3 ; Valentin, Schwarze B 4 ; Hornung, Jacob 4 ; Chattopadhyay, S 5 ; Sun, Zhe 6 ; Guin, Satya N 1   VIAFID ORCID Logo  ; Wosnitza Jochen 4 ; Borrmann Horst 1 ; Chandra, Shekhar 1   VIAFID ORCID Logo  ; Kumar, Nitesh 1   VIAFID ORCID Logo  ; Fink, Jörg 7 ; Sun, Yan 1   VIAFID ORCID Logo  ; Felser, Claudia 1   VIAFID ORCID Logo 

 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X) 
 Helmholtz-Zentrum Berlin fur Materialien und Energie, Berlin, Germany (GRID:grid.424048.e) (ISNI:0000 0001 1090 3682); Institute for Solid State Research, Leibniz IFW Dresden, Dresden, Germany (GRID:grid.14841.38) (ISNI:0000 0000 9972 3583) 
 Helmholtz-Zentrum Berlin fur Materialien und Energie, Berlin, Germany (GRID:grid.424048.e) (ISNI:0000 0001 1090 3682) 
 Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612); Technical University Dresden, Institute for Solid-State and Materials Physics, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
 Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612) 
 University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639) 
 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X); Institute for Solid State Research, Leibniz IFW Dresden, Dresden, Germany (GRID:grid.14841.38) (ISNI:0000 0000 9972 3583); Technical University Dresden, Institute for Solid-State and Materials Physics, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2395250545
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.