Full text

Turn on search term navigation

© 2020 Espinosa Fernandez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The original algorithm that classified triple-negative breast cancer (TNBC) into six subtypes has recently been revised. The revised algorithm (TNBCtype-IM) classifies TNBC into five subtypes and a modifier based on immunological (IM) signatures. The molecular signature may differ between cancer cells in vitro and their respective tumor xenografts. We identified cell lines with concordant molecular subtypes regardless of classification algorithm or analysis of cells in vitro or in vivo, to establish a panel of clinically relevant molecularly stable TNBC models for translational research. Gene expression data were used to classify TNBC cell lines using the original and the revised algorithms. Tumor xenografts were established from 17 cell lines and subjected to gene expression profiling with the original 2188-gene algorithm TNBCtype and the revised 101-gene algorithm TNBCtype-IM. A total of six cell lines (SUM149PT (BL2), HCC1806 (BL2), SUM149PT (BL2), BT549 (M), MDA-MB-453 (LAR), and HCC2157 (BL1)) maintained their subtype classification between in vitro and tumor xenograft analyses across both algorithms. For TNBC molecular classification–guided translational research, we recommend using these TNBC cell lines with stable molecular subtypes.

Details

Title
Identification of triple-negative breast cancer cell lines classified under the same molecular subtype using different molecular characterization techniques: Implications for translational research
Author
Rodrigo Espinosa Fernandez, Jose; Eckhardt, Bedrich L; Lee, Jangsoon; Lim, Bora; Pearson, Troy; Seitz, Rob S; Hout, David R; Schweitzer, Brock L; Nielsen, Tyler J; O Rayne Lawrence; Wang, Ying; Rao, Arvind; Ueno, Naoto T
First page
e0231953
Section
Research Article
Publication year
2020
Publication date
Apr 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2396927524
Copyright
© 2020 Espinosa Fernandez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.