It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Jet transition towards a turbulent state is an interesting topic requiring a detailed analysis of the process leading to the onset and amplification of small flow disturbances. Here we examine experimentally the transition process for an isothermal laminar round free jet at low values of the Reynolds number. Close to the inlet nozzle, the turbulence intensity is assumed to be small enough so that the initial shear layer can be considered laminar and the velocity profile uniform. Experimental data are obtained using a Laser Doppler Anemometry (LDA) technique at various longitudinal and transversal coordinates, (x,y). Spectral analysis of the instantaneous streamwise velocity component u(y,t), at fixed stations x measured from the nozzle exit, reveals that the entrainment physical mechanism, which occurs by engulfment, is caused by the presence of coherent structures. However, in proximity to the jet center, the energy spectrum of the u(x,y = 0, t) velocity component proves the existence of a preferred mode (most unstable mode) of instability that has a convective nature. Our results compare well with those obtained using another experimental method based on laser tomography.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer