It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Predicting the mechanical properties of additively manufactured parts is often a tedious process, requiring the integration of multiple stand-alone and expensive simulations. Furthermore, as properties are highly location-dependent due to repeated heating and cooling cycles, the properties prediction models must be run for multiple locations before the part-level performance can be analyzed for certification, compounding the computational expense. This work has proposed a rapid prediction framework that replaces the physics-based mechanistic models with Gaussian process metamodels, a type of machine learning model for statistical inference with limited data. The metamodels can predict the varying properties within an entire part in a fraction of the time while providing uncertainty quantification. The framework was demonstrated with the prediction of the tensile yield strength of Ferrium ® PH48S maraging stainless steel fabricated by additive manufacturing. Impressive agreement was found between the metamodels and the mechanistic models, and the computation was dramatically decreased from hours of physics-based simulations to less than a second with metamodels. This method can be extended to predict various materials properties in different alloy systems whose process-structure-property-performance interrelationships are linked by mechanistic models. It is powerful for rapidly identifying the spatial properties of a part with compositional and processing parameter variations, and can support part certification by providing a fast interface between materials models and part-level thermal and performance simulations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer