Abstract

Predicting the mechanical properties of additively manufactured parts is often a tedious process, requiring the integration of multiple stand-alone and expensive simulations. Furthermore, as properties are highly location-dependent due to repeated heating and cooling cycles, the properties prediction models must be run for multiple locations before the part-level performance can be analyzed for certification, compounding the computational expense. This work has proposed a rapid prediction framework that replaces the physics-based mechanistic models with Gaussian process metamodels, a type of machine learning model for statistical inference with limited data. The metamodels can predict the varying properties within an entire part in a fraction of the time while providing uncertainty quantification. The framework was demonstrated with the prediction of the tensile yield strength of Ferrium ® PH48S maraging stainless steel fabricated by additive manufacturing. Impressive agreement was found between the metamodels and the mechanistic models, and the computation was dramatically decreased from hours of physics-based simulations to less than a second with metamodels. This method can be extended to predict various materials properties in different alloy systems whose process-structure-property-performance interrelationships are linked by mechanistic models. It is powerful for rapidly identifying the spatial properties of a part with compositional and processing parameter variations, and can support part certification by providing a fast interface between materials models and part-level thermal and performance simulations.

Details

Title
Data-Driven Prediction of Mechanical Properties in Support of Rapid Certification of Additively Manufactured Alloys
Author
Fuyao Yan; Chan, Yu Hin; Saboo, Abhinav; Shah, Jiten; Olson, Gregory B; Chen, Wei
Pages
343-366
Section
ARTICLE
Publication year
2018
Publication date
2018
Publisher
Tech Science Press
ISSN
1526-1492
e-ISSN
1526-1506
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2397270471
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.