It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A meshless collocation method based on the differential reproducing kernel (DRK) interpolation is developed for the three-dimensional (3D) coupled analysis of simply-supported, functionally graded (FG) piezoelectric hollow cylinders. The material properties of FG hollow cylinders are regarded as heterogeneous through the thickness coordinate, and then specified to obey an exponent-law dependent on this. In the present formulation, the shape function for the reproducing kernel (RK) interpolation function at each sampling node is separated into a primitive function possessing Kronecker delta properties and an enrichment function constituting reproducing conditions. By means of this DRK interpolation, the essential boundary conditions can be readily applied, exactly like the implementation in the finite element method (FEM). An additional innovation of this meshless method is that the shape functions for derivatives of the RK interpolation functions are determined using a set of differential reproducing conditions, rather than directly differentiating them. In the implementation of the DRK interpolation-based collocation method presented in this work, some crucial parameters are discussed, such as the optimal support size and the highest-order of the basis functions. The influence of the material-property gradient index on the field variables induced in the FG hollow cylinders is also studied.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer