Abstract

Self-charging power systems integrating energy harvesting technologies and batteries are attracting extensive attention in energy technologies. However, the conventional integrated systems are highly dependent on the availability of the energy sources and generally possess complicated configuration. Herein, we develop chemically self-charging aqueous zinc-ion batteries with a simplified two-electrode configuration based on CaV6O16·3H2O electrode. Such system possesses the capability of energy harvesting, conversion and storage simultaneously. It can be chemically self-recharged by the spontaneous redox reaction between the discharged cathode and oxygen from the ambient environment. Chemically self-recharged zinc-ion batteries display an initial open-circuit voltage of about 1.05 V and a considerable discharge capacity of about 239 mAh g−1, indicating the excellent self-rechargeability. Impressively, such chemically self-charging zinc-ion batteries can also work well at chemical or/and galvanostatic charging hybrid modes. This work not only provides a route to design chemically self-charging energy storage, but also broadens the horizons of aqueous zinc-ion batteries.

Self-charging power systems integrating energy generation and storage are receiving consideration attention. Here the authors report an aqueous Zn-ion battery that can be self-recharged by the spontaneous redox reaction between cathode and oxygen from ambient environment without external power supply.

Details

Title
A chemically self-charging aqueous zinc-ion battery
Author
Zhang, Yan 1 ; Fang, Wan 1 ; Huang, Shuo 1 ; Wang, Shuai 1 ; Niu Zhiqiang 1   VIAFID ORCID Logo  ; Chen, Jun 1   VIAFID ORCID Logo 

 Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin, People’s Republic of China (GRID:grid.216938.7) (ISNI:0000 0000 9878 7032) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2398125379
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.