It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Healable conductive materials have received considerable attention. However, their practical applications are impeded by low electrical conductivity and irreversible degradation after breaking/healing cycles. Here we report a highly conductive completely reversible electron tunneling-assisted percolation network of silver nanosatellite particles for putty-like moldable and healable nanocomposites. The densely and uniformly distributed silver nanosatellite particles with a bimodal size distribution are generated by the radical and reactive oxygen species-mediated vigorous etching and reduction reaction of silver flakes using tetrahydrofuran peroxide in a silicone rubber matrix. The close work function match between silicone and silver enables electron tunneling between nanosatellite particles, increasing electrical conductivity by ~5 orders of magnitude (1.02×103 Scm−1) without coalescence of fillers. This results in ~100% electrical healing efficiency after 1000 breaking/healing cycles and stability under water immersion and 6-month exposure to ambient air. The highly conductive moldable nanocomposite may find applications in improvising and healing electrical parts.
Self-healable conductive materials are of importance for emerging electronic technologies. Here, Suh et al. report a nanocomposite exhibiting high conductivity facilitated by electron tunneling between silver nanoparticles and its 100% recovery of conductivity after 1000 breaking and healing cycles.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Sungkyunkwan University, School of Mechanical Engineering, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X); Production Engineering Research Institute, LG Electronics, Seoul, Republic of Korea (GRID:grid.464630.3) (ISNI:0000 0001 0696 9566)
2 Sungkyunkwan University, Department of Energy Science, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)
3 Sungkyunkwan University, School of Mechanical Engineering, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)
4 Sungkyunkwan University, SKKU Advanced Institute of Nano Technology (SAINT), Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)
5 Sungkyunkwan University, School of Mechanical Engineering, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X); Sungkyunkwan University, SKKU Advanced Institute of Nano Technology (SAINT), Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)