Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As offshore wind turbines are moving to deeper water depths, mooring systems are becoming more and more significant for floating offshore wind turbines (FOWTs). Mooring line failures could affect power generations of FOWTs and ultimately incur risk to nearby structures. Among different failure mechanics, an excessive mooring line tension is one of the most essential factors contributing to mooring failure. Even advanced sensing offers an effective way of failure detections, but it is still difficult to comprehend why failures happened. Unlike traditional parametric studies that are computational and time-intensive, this paper applies deep learning to investigate the major driven force on the mooring line tension. A number of environmental conditions are considered, ranging from cut in to cut out wind speeds. Before formatting input data into the deep learning model, a FOWT model of dynamics was simulated under pre-defined environmental conditions. Both taut and slack mooring configurations were considered in the current study. Results showed that the most loaded mooring line tension was mainly determined by the surge motion, regardless of mooring line configurations, while the blade and the tower elasticity were less significant in predicting mooring line tension.

Details

Title
Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning
Author
Lin, Zi 1 ; Liu, Xiaolei 2   VIAFID ORCID Logo 

 Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK; [email protected] 
 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK 
First page
2264
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2400032211
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.