Abstract

Skeletal muscle tissue is characterized by restrained self-regenerative capabilities, being ineffective in relation to trauma extension both in time span (e.g. chronic diseases) and in size (e.g. large trauma). For these reasons, tissue engineering and/or cellular therapies represent a valuable solution in the cases where the physiological healing process failed. Satellite cells, the putative skeletal muscle stem cells, have been the first solution explored to remedy the insufficient self-regeneration capacity. Nevertheless, some limitation related to donor age, muscle condition, expansion hitch and myogenic potentiality maintenance have limited their use as therapeutic tool. To overcome this hindrance, different stem cells population with myogenic capabilities have been investigated to evaluate their real potentiality for therapeutic approaches, but, as of today, the perfect cell candidate has not been identified yet. In this work, we analyze the characteristics of skeletal muscle-derived human Mesenchymal Stem Cells (hMSCs), showing the maintenance/increment of myogenic activity upon differential culture conditions. In particular, we investigate the influence of a commercial enriched growth medium (Cyto-Grow), and of a medium enriched with either human-derived serum (H.S.) or Platelet-rich Plasma (PrP), in order to set up a culture protocol useful for employing this cell population in clinical therapeutic strategies. The presented results reveal the remarkable effects of H.S. in the enhancement of hMSC proliferation and myogenic differentiation.

Competing Interest Statement

The authors have declared no competing interest.

Details

Title
Skeletal muscle-derived Human Mesenchymal Stem Cells: influence of different culture conditions on proliferative and myogenic capabilities
Author
Testa, Stefano; Carles Sanchez Riera; Fornetti, Ersilia; Riccio, Federica; Fuoco, Claudia; Bernardini, Sergio; Baldi, Jacopo; Costantini, Marco; Foddai, Maria Laura; Cannata, Stefano; Gargioli, Cesare
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2020
Publication date
May 13, 2020
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2402189283
Copyright
© 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.