It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The rutile SnxTi1−xO2 (x = 0, 0.33, 0.5, 0.67, 1) solid solution was synthesized by a one-step hydrothermal method, in which tetrabutyl titanate and Tin (IV) chloride pentahydrate were used as raw materials. A series of Ru/SnxTi1−xO2 were then prepared by the impregnation process in RuCl3 to investigate the performance and stability of CO and C3H8 oxidation. These catalysts were characterized through XRD, N2 adsorption-desorption, FT-IR, TEM, XPS, H2-TPR, and O2-TPD techniques. The effect of Sn/Ti molar ratio and hydrothermal condition on the low-temperature catalytic oxidized performance and stability of Ru/SnxTi1−xO2 were investigated. The results indicated that Ru/Sn0.67Ti0.33O2 catalyst showed an excellent activity and stability at low temperatures. The CO conversion reached 50% at 180 °C and 90% at 240 °C. Besides, the C3H8 conversion reached 50% at 320 °C, the complete conversion of C3H8 realized at 500 °C, and no deactivation occurs after 12 h of catalytic reaction. The excellent low-temperature activity and stability of the Ru/Sn0.67Ti0.33O2 were attributed to the following factors. Firstly, XRD results showed that Sn4+ was successfully introduced into the lattice of TiO2 to replace Ti4+ forming a homogeneous solid solution (containing –Sn4+–O–Ti4+– species), which was consistent with TEM and N2 adsorption-desorption results. The introduction of Sn could suppress the growth of anatase crystal and promote the formation of rutile phase, and this phase transition was helpful to improve the low-temperature activity of the catalysts. Secondly, TEM images showed that ultrafine Ru nanoparticles (~ 5 nm) were dispersed on Sn0.67Ti0.33O2 support, suggesting that the formation of SnxTi1−xO2 solid solution was beneficial to the dispersion of Ru particles.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer