Full text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Natural gas has been proposed as a solution to increase the security of energy supply and reduce environmental pollution around the world. Being able to forecast natural gas price benefits various stakeholders and has become a very valuable tool for all market participants in competitive natural gas markets. Machine learning algorithms have gradually become popular tools for natural gas price forecasting. In this paper, we investigate data-driven predictive models for natural gas price forecasting based on common machine learning tools, i.e., artificial neural networks (ANN), support vector machines (SVM), gradient boosting machines (GBM), and Gaussian process regression (GPR). We harness the method of cross-validation for model training and monthly Henry Hub natural gas spot price data from January 2001 to October 2018 for evaluation. Results show that these four machine learning methods have different performance in predicting natural gas prices. However, overall ANN reveals better prediction performance compared with SVM, GBM, and GPR.

Details

Title
Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods
Author
Su, Moting; Zhang, Zongyi; Zhu, Ye; Zha, Donglan; Wen, Wenying
First page
1680
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403216714
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.