Full text

Turn on search term navigation

© 2020 Curtin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Evolutionarily conserved mechanisms maintain homeostasis of essential elements, and are believed to be highly time-variant. However, current approaches measure elemental biomarkers at a few discrete time-points, ignoring complex higher-order dynamical features. To study dynamical properties of elemental homeostasis, we apply laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) to tooth samples to generate 500 temporally sequential measurements of elemental concentrations from birth to 10 years. We applied dynamical system and Information Theory-based analyses to reveal the longest-known attractor system in mammalian biology underlying the metabolism of nutrient elements, and identify distinct and consistent transitions between stable and unstable states throughout development. Extending these dynamical features to disease prediction, we find that attractor topography of nutrient metabolism is altered in amyotrophic lateral sclerosis (ALS), as early as childhood, suggesting these pathways are involved in disease risk. Mechanistic analysis was undertaken in a transgenic mouse model of ALS, where we find similar marked disruptions in elemental attractor systems as in humans. Our results demonstrate the application of a phenomological analysis of dynamical systems underlying elemental metabolism, and emphasize the utility of these measures in characterizing risk of disease.

Details

Title
Dysregulated biodynamics in metabolic attractor systems precede the emergence of amyotrophic lateral sclerosis
Author
Curtin, Paul; Austin, Christine; Curtin, Austen; Gennings, Chris; Figueroa-Romero, Claudia; Mikhail, Kristen A; Botero, Tatiana M; Goutman, Stephen A; Feldman, Eva L; Arora, Manish
First page
e1007773
Section
Research Article
Publication year
2020
Publication date
Apr 2020
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403774269
Copyright
© 2020 Curtin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.