Full Text

Turn on search term navigation

© 2020 Cai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The growth of the malaria parasite Plasmodium falciparum in human blood causes all the symptoms of malaria. To proliferate, non-motile parasites must have access to susceptible red blood cells, which they invade using pairs of parasite ligands and host receptors that define invasion pathways. Parasites can switch invasion pathways, and while this flexibility is thought to facilitate immune evasion, it may also reflect the heterogeneity of red blood cell surfaces within and between hosts. Host genetic background affects red blood cell structure, for example, and red blood cells also undergo dramatic changes in morphology and receptor density as they age. The in vivo consequences of both the accessibility of susceptible cells, and their heterogeneous susceptibility, remain unclear. Here, we measured invasion of laboratory strains of P. falciparum relying on distinct invasion pathways into red blood cells of different ages. We estimated invasion efficiency while accounting for red blood cell accessibility to parasites. This approach revealed different tradeoffs made by parasite strains between the fraction of cells they can invade and their invasion rate into them, and we distinguish “specialist” strains from “generalist” strains in this context. We developed a mathematical model to show that generalist strains would lead to higher peak parasitemias in vivo compared to specialist strains with similar overall proliferation rates. Thus, the ecology of red blood cells may play a key role in determining the rate of P. falciparum parasite proliferation and malaria virulence.

Details

Title
Accounting for red blood cell accessibility reveals distinct invasion strategies in Plasmodium falciparum strains
Author
Cai, Francisco Y; DeSimone, Tiffany M; Hansen, Elsa; Jennings, Cameron V; Bei, Amy K; Ahouidi, Ambroise D; Mboup, Souleymane; Duraisingh, Manoj T; Buckee, Caroline O
First page
e1007702
Section
Research Article
Publication year
2020
Publication date
Apr 2020
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403774339
Copyright
© 2020 Cai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.