Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Photovoltaic (PV) power generation is greatly affected by meteorological environmental factors, with obvious fluctuations and intermittencies. The large-scale PV power generation grid connection has an impact on the source-load stability of the large power grid. To scientifically and rationally formulate the power dispatching plan, it is necessary to realize the PV output prediction. The output prediction of single power plants is no longer applicable to large-scale power dispatching. Therefore, the demand for the PV output prediction of multiple power plants in an entire region is becoming increasingly important. In view of the drawbacks of the traditional regional PV output prediction methods, which divide a region into sub-regions based on geographical locations and determine representative power plants according to the correlation coefficient, this paper proposes a multilevel spatial upscaling regional PV output prediction algorithm. Firstly, the sub-region division is realized by an empirical orthogonal function (EOF) decomposition and hierarchical clustering. Secondly, a representative power plant selection model is established based on the minimum redundancy maximum relevance (mRMR) criterion. Finally, the PV output prediction for the entire region is achieved through the output prediction of representative power plants of the sub-regions by utilizing the Elman neural network. The results from a case study show that, compared with traditional methods, the proposed prediction method reduces the normalized mean absolute error (nMAE) by 4.68% and the normalized root mean square error (nRMSE) by 5.65%, thereby effectively improving the prediction accuracy.

Details

Title
A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion
Author
Fu, Lei  VIAFID ORCID Logo  ; Yang, Yiling  VIAFID ORCID Logo  ; Yao, Xiaolong; Jiao, Xufen; Zhu, Tiantian
First page
3817
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403818632
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.