It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Design and processing of advanced lightweight structural alloys based on magnesium and titanium rely critically on a control over twinning that remains elusive to date and is dependent on an explicit understanding on the twinning nucleation mechanism in hexagonal close-packed (HCP) crystals. Here, by using in-situ high resolution transmission electron microscopy, we directly show a dual-step twinning nucleation mechanism in HCP rhenium nanocrystals. We find that nucleation of the predominant {1 0 −1 2} twinning is initiated by disconnections on the Prismatic│Basal interfaces which establish the lattice correspondence of the twin with a minor deviation from the ideal orientation. Subsequently, the minor deviation is corrected by the formation of coherent twin boundaries through rearrangement of the disconnections on the Prismatic│Basal interface; thereafter, the coherent twin boundaries propagate by twinning dislocations. The findings provide high-resolution direct evidence of the twinning nucleation mechanism in HCP crystals.
Aspects of twinning in hexagonal-close-packed crystals remain elusive. Here, the authors directly image twinning in rhenium nanocrystals and show the process is mediated by disconnections on Prismatic│Basal interfaces as the twin initially deviates from its ideal orientation before it is corrected.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)
2 Department of Chemical and Materials Engineering, University of Nevada, Reno, USA (GRID:grid.266818.3) (ISNI:0000 0004 1936 914X)
3 Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, USA (GRID:grid.451303.0) (ISNI:0000 0001 2218 3491)