It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Osteosarcoma (OS) is a primary malignant bone tumor with a high rate of metastasis and a short 5-year survival rate. MiR-363 was downregulated in a variety of tumors and played a role in suppressing tumors. However, the roles of miR-363 in osteosarcoma remain unknown; thus, the purpose of this study was to explore the functions of miR-363 in osteosarcoma.
Methods
CCK-8 and transwell assays were performed to evaluate the proliferation, migration, and invasion abilities of MG63 cells. The epithelial-mesenchymal transition (EMT) and apoptosis-associated proteins were measured by using Western blot assay. Luciferase reporter assay was utilized to verify whether miR-363 directly bound to the 3′-UTR of NOB1 mRNA.
Results
MiR-363 was downregulated while NOB1 was upregulated in osteosarcoma clinical tissue specimens and cell lines as compared with the adjacent normal tissue specimens and normal cell line. The miR-363 is reversely correlated with the expression of NOB1 in osteosarcoma tissues. Overexpression of miR-363 suppressed the ability of cell migration, invasion, and EMT, whereas low expression of miR-363 promoted this ability. In addition, miR-363 inhibited osteosarcoma proliferation both in vitro and in vivo and inhibited the apoptosis in MG63 cells. Interference of NOB1 could inhibit the migration, invasion, and EMT of osteosarcoma cell line MG63. NOB1 was verified to be a direct target of miR-363 and its expression was mediated by miR-363. Re-expression of NOB1 could partially reverse the inhibitory effect of miR-363 on cell migration and invasion. In addition, low expression of miR-363 or overexpression of NOB1 predicted poor prognosis of osteosarcoma patients.
Conclusion
MiR-363 inhibited osteosarcoma the proliferation, migration, invasion, and EMT and induced the apoptosis by directly targeting NOB1 in MG63 cells. The newly identified miR-363/NOB1 axis provides novel insights into the pathogenesis of osteosarcoma.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer