Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Outcome in high-risk patients with refractory or relapsed germ cell tumours (GCT) remains poor. Novel strategies enhancing therapeutic efficacy whilst limiting therapeutic burden are warranted, yet immunotherapy approaches geared towards activating endogenous antitumor responses have not been successful thus far. Redirection of cytotoxic effector cells by bispecific antibodies represents a promising approach in this setting. We demonstrate that the Epithelial Cell Adhesion Molecule (EpCAM) is broadly expressed in GCT cell lines of different histologic origin including seminoma, choriocarcinoma (CHC), and embryonal carcinoma (EC). In these GCT lines of variable EpCAM surface expression, targeting T cells by the prototypic bispecific EpCAM/CD3-antibody (bAb) Catumaxomab together with natural killer (NK) cell engagement via the Fc domain promotes profound cytotoxicity across a broad range of antibody dilutions. In contrast, tumor cell lysis mediated by either immune cell subset alone is influenced by surface density of the target antigen. In the CHC line JAR, NK cell-dependent cytotoxicity dominates, which may be attributed to differential surface expression of immunomodulatory proteins such as MHC-I, CD24, and Fas receptors on CHC and EC. In view of redirecting T cell therapy mediated by bispecific antibodies, such differences in GCT immunophenotype potentially favoring immune escape are worth further investigation.

Details

Title
Targeting EpCAM by a Bispecific Trifunctional Antibody Exerts Profound Cytotoxic Efficacy in Germ Cell Tumor Cell Lines
Author
Schönberger, Stefan  VIAFID ORCID Logo  ; Kraft, Daniela; Nettersheim, Daniel  VIAFID ORCID Logo  ; Schorle, Hubert  VIAFID ORCID Logo  ; Casati, Anna; Craveiro, Rogerio B; Mahsa Mir Mohseni; Calaminus, Gabriele  VIAFID ORCID Logo  ; Dilloo, Dagmar
First page
1279
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2406216067
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.