It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The process of matching and integrating records that relate to the same entity from one or more datasets is known as record linkage, and it has become an increasingly important subject in many application areas, including business, government and health system. The data from these areas often contain sensitive information. To prevent privacy breaches, ideally records should be linked in a private way such that no information other than the matching result is leaked in the process, and this technique is called privacy-preserving record linkage (PPRL). With the increasing data, scalability becomes the main challenge of PPRL, and many private blocking techniques have been developed for PPRL. They are aimed at reducing the number of record pairs to be compared in the matching process by removing obvious non-matching pairs without compromising privacy. However, most of them are designed for two databases and they vary widely in their ability to balance competing goals of accuracy, efficiency and security. In this paper, we propose a novel private blocking approach for PPRL based on dynamic k-anonymous blocking and Paillier cryptosystem which can be applied on two or multiple databases. In dynamic k-anonymous blocking, our approach dynamically generates blocks satisfying k-anonymity and more accurate values to represent the blocks with varying k. We also propose a novel similarity measure method which performs on the numerical attributes and combines with Paillier cryptosystem to measure the similarity of two or more blocks in security, which provides strong privacy guarantees that none information reveals even collusion. Experiments conducted on a public dataset of voter registration records validate that our approach is scalable to large databases and keeps a high quality of blocking. We compare our method with other techniques and demonstrate the increases in security and accuracy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Northeastern University, College of Computer Science and Engineering, Shenyang, China (GRID:grid.412252.2) (ISNI:0000 0004 0368 6968)