This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
It has been well established that patients with end-stage renal disease (ESRD) undergoing hemodialysis (HD) had a higher association of peripheral arterial disease (PAD), lower extremity amputation (LEA), and foot ulcerations (FU) [1–3]. Such an association could be attributed to a common atherosclerotic cause. Moreover, diabetic patients with ESRD had a 10-fold increased risk of LEA in comparison to diabetes patients without renal insufficiency [1]. Several studies have reported increased rates of LEA among ESRD patients, irrespective of the concomitant presence of diabetes mellitus (DM) [4–6].
The mechanism of FU development is multifactorial which depends upon various physiological, mechanical, and treatment factors. Hill et al. [7] reported significantly higher incidence of foot complications in patients with concomitant ESRD and DM in comparison to those who had only DM suggesting a possible relationship between ESRD and FU. In addition, LEA and FU are well established complication of diabetic nephropathy [8, 9]. Margolis et al. [10] observed a strong correlation between progressions of chronic kidney disease (CKD) with the development of diabetic FU. Game et al. [11] also demonstrated a close association of FU and amputations in diabetic patients started to undergo dialysis. Brownrigg et al. [12] performed a meta-analysis to look for the relationship of diabetic FU with cardiovascular disease (CVD) and all-cause mortality. The authors found an increased association of CVD and mortality in diabetic patients with FU in comparison to those without FU. Interestingly, a recent study advocated a higher incidence of risk factors (PAD and peripheral neuropathy) for FU among HD patients [13]. In Qatar, an earlier report from our center identified a high incidence of PAD in HD patients [14]. However, there is a lack of information that describes the risk factors and prognostic implications of FU among HD patients in the Arab Middle East. We aim to evaluate this association and its impact on the outcomes over a 5-year period.
2. Methods
We conducted a retrospective analysis of all hemodialysis patients enrolled at the HD unit at Hamad General Hospital (HGH), Qatar, over five years (2007–2012) duration. The study recruited 252 consecutive patients with ESRD who need regular HD. Patients surviving for at least 3 months on the initial HD were included in the study. The study excluded all patients that were on peritoneal dialysis or had incomplete data. HD patients were categorized into two groups according to whether they had foot ulcer (FU) or not (no-FU) based on physical examination. The attending physician in the HD unit collected the data regarding the demographics characteristics, clinical evaluation, medical history, and comorbidities. During the follow-up period over 5 years, HD-related procedures such as vascular access (arteriovenous fistula, arteriovenous grafting, and tunneled catheter), renal transplantation, and vascular complication were also reported. The need for ≥3 vascular accesses (due to mechanical obstruction, poor flow, or infection) had been analyzed. We speculated that HD patients with FU had poor outcomes compared to no-FU patients. The study end-points (major amputation, vascular complications, and mortality) were also subanalyzed according to the presence or absence of DM and PAD.
FU was defined according to the clinical findings as a full thickness skin break below the level of malleoli. Further microbiology and radiological assessment were done as well for ulcers. Patients were considered to have PAD if they had one of the following criteria: ABI < 0.9, history of intermittent claudication, vascular bypass or endovascular intervention for occlusive vascular disease, or amputation due to occlusive vascular disease [14]. Major amputations were defined as amputations proximal to the ankle joint, and minor amputations were defined as those through or distal to the ankle joint [15]. Diabetic nephropathy was diagnosed during patient follow-up in the nephrology out-patient clinic according to the patient chart. It was defined as presence of macroalbuminuria that is a urinary albumin excretion of more than 300 mg in a 24-hour collection or macroalbuminuria and abnormal renal function as represented by an abnormality in serum creatinine, calculated creatinine clearance, or glomerular filtration rate [16].
Data were presented as proportions or mean and standard deviation, as appropriate. Analyses were conducted using the Student’s
3. Results
A cohort of 252 HD patients was included in the study, of which 42 had FU (17%) and 210 were without FU. Demographic, clinical characteristics, and risk factors for HD patients with and without FU were shown in Table 1 and Figure 1. Patients with FU were 6 years older and had higher incidence of retinopathy (67% versus 40.5%;
Table 1
Foot ulcer in hemodialysis patients (
No-FU ( |
FU ( |
|
|
Age |
|
|
0.02 |
Males (%) | 49 | 55 | 0.49 |
BMI |
|
|
0.35 |
Married (%) | 85 | 95 | 0.07 |
Illiterate (%) | 43 | 50 | 0.39 |
Duration of Hemodialysis (yrs) |
|
|
0.84 |
Prior Renal transplant | 14% | 2.4% | 0.03 |
Dyslipidemia (%) | 24 | 33 | 0.19 |
Hypertension (%) | 84 | 83 | 0.93 |
Smoking (%) | 4.3 | 7.1 | 0.43 |
Nephropathy (%) | 42 | 79 | 0.001 |
Diabetes Mellitus | 56% | 83.3% | 0.001 |
HbA1c |
|
|
0.31 |
Retinopathy | 54% | 88% | 0.001 |
≥3 vascular accesses | 47% | 69% | 0.01 |
AV Fistula | 72% | 69% | 0.71 |
Tunnel Catheter | 82% | 17% | 0.36 |
Major amputation | 2% | 36% | 0.001 |
Coronary artery disease | 45.7% | 81% | 0.001 |
Peripheral artery disease | 38.5% | 87.8% | 0.001 |
Total Renal transplant | 11% | 2% | 0.001 |
Total 5-year deaths | 43% | 81% | 0.001 |
FU: Foot ulcer; CAD: Coronary artery disease.
Table 2
Laboratory results.
No ulcer | Ulcer |
|
|
Cholesterol (mean ± SD) |
|
|
0.66 |
Triglyceride (mean ± SD) |
|
|
0.99 |
HbA1c (mean ± SD) |
|
|
0.32 |
Hemoglobin (mean ± SD) |
|
|
0.46 |
Vitamin D (mean ± SD) |
|
|
0.98 |
Serum calcium (mean ± SD) |
|
|
0.22 |
Phosphorus (mean ± SD) |
|
|
0.37 |
Albumin (mean ± SD) |
|
|
0.15 |
PTH (mean ± SD) |
|
|
0.18 |
3.1. Clinical Outcomes at Three-Year Period
Overall mortality rate within 3 years was 24.2% among the study cohort and was comparable between the two groups. Development of PAD (71% versus 32%;
3.2. Clinical Outcomes at Five-Year Period
In the following two years, significantly more number of patients in FU group developed new PAD (22% versus 1.4%;
Figure 2 shows that DM patients had significantly higher incidence of FU (23% versus 7%;
[figure omitted; refer to PDF]
In DM group, more number of patients developed PAD (61%). Figure 3 demonstrates the outcomes in HD patients based on the presence/absence of DM and/or PAD.
[figure omitted; refer to PDF]
Patients who had PAD showed increased incidence of FU (41% versus 4%;
3.3. Univariate and Multivariate Logistic Regression Analysis
Univariate analysis (Figure 1) shows the mortality rate in patients with FU in both diabetic and nondiabetic patients.
On multivariate analysis,after adjusting for DM, HbA1c, age, and gender, the presence of PAD was the major independent predictor of development of FU in HD patients with an adjusted odd ratio (aOR) of 16.0 (95% confidence interval (CI): 4.41–62.18,
[figure omitted; refer to PDF]
[figure omitted; refer to PDF]4. Discussion
The present study highlights the frequency and implications of FU in patients undergoing maintenance HD over a 5-year duration. There are several key findings in this report. In the entire HD cohort, 17% had FU. Also, among those who had FU, 17% had no DM. FU was diagnosed in 23% of diabetic HD patients. The mortality rates were higher in patients with FU in both diabetic and nondiabetic patients; however it was relatively higher in diabetic patients. Moreover, FU was associated with 4-fold increased risk of mortality after adjusting for age, sex, and CAD. Presence of PAD was associated with 16-fold increased risk of FU in HD after adjustment for age, sex, DM, and duration of HD. Patients in the FU group underwent higher number of repeated HD vascular accesses in comparison to non-FU group.
Recent studies have identified an increased risk of FU and LEA in CKD patients who did not receive renal replacement therapy [10, 17]. Other studies investigated patients of combined DM with ESRD and found a higher risk of FU in patients undergoing HD [11, 15]. A Swedish study demonstrated a 2.45 times increased risk of LEA in ESRD patients compared to those without ESRD [18]. Similarly, Prompers et al. [19] found the risk of nonhealing of FU to be 2.3-fold higher in ESRD than in non-ESRD patients.
The correlation between dialysis and foot complications among patients with DM and CKD has been initially described by McGrath and Curran [20]. They observed 50% mortality rate at one-year follow-up after LEA. In our study, the rate of major amputation was significantly higher in FU patients which corroborates with an earlier study showing increased rate of amputation in CKD patients undergoing dialysis (57%) as compared to those without dialysis (25%) [4]. The relevance of selecting FU in our report is that it is potentially preventable, and its progression generally leads to serious foot complications, major amputation, and mortality. In their long-term follow-up study (10 years), Morbach and coworkers [21] concluded that patients with diabetic foot had high mortality particularly in the presence of PAD or renal failure. In comparison to that study, our 5-year study showed that FU patients had higher mortality (81% versus 70.4%) although our patients were 6 years younger and less likely to have DM (83% versus 100%) and PAD (34% versus 55.5%). Moreover, the entire cohort of the present study was undergoing HD (100% versus 4%).
The association of severe complications in HD patients might be attributed to the cardiovascular risk factors. Several contributing factors have been proposed for the development of FU in patients with ESRD and DM. The important risk factors for the development of diabetic FU involve distal polyneuropathy, microangiopathy, and macroangiopathy. Also, cardiovascular autonomic neuropathy is another coexisting complication of DM [12]. O’Hare et al. [22] reported high incidence of PAD in HD patients which ranges from 24% to 77%. The authors found that PAD is independently associated with ESRD. According to one of our recent studies, PAD patients had 4- to 5-fold increased incidence of FU and LEA in comparison to non-PAD patients [14]. In our study, a higher incidence of retinopathy, polyvascular disease, angina, PAD, and nephropathy was associated with FU.
Ndip et al. [15] studied the risk factors associated with prevalent FU in patients with DM and CKD (predialysis versus on-dialysis). The authors reported that dialysis therapy and previous FU were the only independent predictors of the development of new FU. Kaminski et al. [23] reported a high prevalence of risk factors for FU present in patients with ESRD either with or without the coexistence of DM. The authors did not indicate the severity of ESRF or whether the patients were on dialysis or not.
Speckman et al. [24] found that DM, preexisting comorbidities, CVD, HD inadequacy, and lower serum albumin level are the major factors for LEA. Consistent with our findings, a recent meta-analysis reported higher association of CVD, DM, and FU [12]. Ischemic in comparison to neuropathic ulcers are associated with higher mortality rate. Moreover, the marked inflammatory response during the process of ulceration has a significant role in the initiation and worsening of the atherosclerosis [12]. In our study, among HD patients without diabetes, only 7% developed FU, despite a high prevalence of PAD and CAD.
Wolf et al. [17] reported that the presence of DM in ESRF patients increases the risk of LEA 10 times in comparison to those who are diabetic without ESRF. Moreover, during HD, around 4% of patients require an amputation each year [17, 25].
Our subanalysis showed significantly higher incidence of FU, amputation, and mortality in diabetic patients than in non-DM patients. Also, patients with combined DM and PAD revealed increased association of FU, amputation, and mortality. Our findings are supported by a large meta-analysis which showed that PAD is independently associated with CVD and all-cause mortality [12]. Further, the authors reported an increased risk of all-cause mortality in diabetic patients who developed FU than in diabetics without FU.
This study has several limitations. Due to retrospective nature of the study, it is not possible to specify the extent of infection, neuropathy, ischemia, depth, or extent of tissue loss grade of FU. Another limitation is the additive effect of diabetes on HD patients who developed foot ulcers. We did not know how many HD patients developed DM during the follow-up. In order to confirm our findings, large sample-sized studies are needed to establish the implications of FU in HD patients. ABI < 9 was used as a part of the diagnosis of PAD which may lead to underestimation of the disease. Previous data showed that as with low ABI, high rates of mortality, vascular events, and amputation were reported in patients with high ABI or noncompressible vessels. In a large study of patients with DM and CAD, Singh et al. [26] reported a high prevalence of arterial stiffness, similar to that seen in older individuals and dialysis patients. Recently, Yap et al. (2014) defined PAD as an ABI < 0.9 or >1.4, these high ABI values were observed in patients with diabetes, particularly for those with concomitant CKD [27].
In conclusion, hemodialysis is a significant risk factor for FU which needs special attention. Further, PAD is significantly associated with FU, amputation, and mortality in diabetic HD patients. The increased risk of mortality could be explained by the greater burden of CVD in these patients. Therefore, HD patient needs intensive foot care to avoid complications of the lower limb and warrant progressive modification of CVD risk factors.
Acknowledgments
The authors thank the staff of the hemodialysis unit, the vascular surgery section at Hamad General Hospital. The authors also thank the Medical Research Center at HMC, Qatar, for the approval of this study (IRB #12007/12).
[1] P. W. Eggers, D. Gohdes, J. Pugh, "Nontraumatic lower extremity amputations in the Medicare end-stage renal disease population," Kidney International, vol. 56 no. 4, pp. 1524-1533, DOI: 10.1046/j.1523-1755.1999.00668.x, 1999.
[2] A. O'Hare, K. Johansen, "Lower-extremity peripheral arterial disease among patients with end-stage renal disease," Journal of the American Society of Nephrology, vol. 12 no. 12, pp. 2838-2847, 2001.
[3] V. L. Lamar Welch, M. Casper, K. Greenlund, Z.-J. Zheng, W. Giles, S. Rith-Najarian, "Prevalence of lower extremity arterial disease defined by the ankle-branchial index among American Indians: the inter-tribal heart project," Ethnicity and Disease, vol. 12 no. 1, pp. S1-S1, 2002.
[4] S. Morbach, C. Quante, H. R. Ochs, F. Gaschler, J. M. Pallast, U. Knevels, "Increased risk of lower-extremity amputation among Caucasian diabetic patients on dialysis," Diabetes Care, vol. 24 no. 9, pp. 1689-1690, 2001.
[5] A. M. O'Hare, P. Bacchetti, M. Segal, C.-Y. Hsu, K. L. Johansen, "Mortality Study Waves: Factors associated with future amputation among patients undergoing hemodialysis: results from the dialysis morbidity and mortality study waves 3 and 4," The American Journal of Kidney Diseases, vol. 41 no. 1, pp. 162-170, DOI: 10.1053/ajkd.2003.50000, 2003.
[6] A. M. O'Hare, D. V. Glidden, C. S. Fox, C.-Y. Hsu, "High prevalence of peripheral arterial disease in persons with renal insufficiency: results from the national health and nutrition examination survey 1999-2000," Circulation, vol. 109 no. 3, pp. 320-323, DOI: 10.1161/01.CIR.0000114519.75433.DD, 2004.
[7] M. N. Hill, H. I. Feldman, S. C. Hilton, M. J. Holechek, M. Ylitalo, G. W. Benedict, "Risk of foot complications in long-term diabetic patients with and without ESRD: a preliminary study," The American Nephrology Nurses' Association, vol. 23 no. 4, pp. 381-388, 1996.
[8] D. J. S. Fernando, A. Hutchison, A. Veves, R. Gokal, A. J. M. Boulton, "Risk factors for non-ischaemic foot ulceration in diabetic nephropathy," Diabetic Medicine, vol. 8 no. 3, pp. 223-225, 1991.
[9] F. Guerrero-Romero, M. Rodríguez-Morán, "Relationship of microalbuminuria with the diabetic foot ulcers in type II diabetes," Journal of Diabetes and its Complications, vol. 12 no. 4, pp. 193-196, DOI: 10.1016/S1056-8727(97)00112-8, 1998.
[10] D. J. Margolis, O. Hofstad, H. I. Feldman, "Association between renal failure and foot ulcer or lower-extremity amputation in patients with diabetes," Diabetes Care, vol. 31 no. 7, pp. 1331-1336, DOI: 10.2337/dc07-2244, 2008.
[11] F. L. Game, S. Y. Chipchase, R. Hubbard, R. P. Burden, W. J. Jeffcoate, "Temporal association between the incidence of foot ulceration and the start of dialysis in diabetes mellitus," Nephrology Dialysis Transplantation, vol. 21 no. 11, pp. 3207-3210, DOI: 10.1093/ndt/gfl427, 2006.
[12] J. R. Brownrigg, J. Davey, P. J. Holt, W. A. Davis, M. M. Thompson, K. K. Ray, R. J. Hinchliffe, "The association of ulceration of the foot with cardiovascular and all-cause mortality in patients with diabetes: a meta-analysis," Diabetologia, vol. 55, pp. 2906-2912, 2012.
[13] N. Jones, S. Riley, A. Phillips, "Prevalence of risk factors for foot ulceration in a general haemodialysis population," Journal of Foot and Ankle Research, vol. 3,DOI: 10.1186/1757-1146-3-S1-O13, 2010.
[14] H. Al Thani, A. El-Menyar, A. Hussein, A. Sadek, A. Sharaf, R. Singh, V. Koshy, J. Al Suwaidi, "Prevalence, predictors, and impact of peripheral arterial disease in hemodialysis patients: a cohort study with a 3-year follow-up," Angiology, vol. 64, pp. 98-104, 2013.
[15] A. Ndip, M. K. Rutter, L. Vileikyte, A. Vardhan, A. Asari, M. Jameel, H. A. Tahir, L. A. Lavery, A. J. M. Boulton, "Dialysis treatment is an independent risk factor for foot ulceration in patients with diabetes and stage 4 or 5 chronic kidney disease," Diabetes Care, vol. 33 no. 8, pp. 1811-1816, DOI: 10.2337/dc10-0255, 2010.
[16] S. Butt, P. Hall, S. Nurko, "Diabetic nephropathy," . 2013, http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/nephrology/diabetic-nephropathy/
[17] G. Wolf, N. Müller, M. Busch, G. Eidner, C. Kloos, W. Hunger-Battefeld, U. A. Müller, "Diabetic foot syndrome and renal function in type 1 and 2 diabetes mellitus show close association," Nephrology Dialysis Transplantation, vol. 24 no. 6, pp. 1896-1901, DOI: 10.1093/ndt/gfn724, 2009.
[18] M. A. Gershater, M. Löndahl, P. Nyberg, J. Larsson, J. Thörne, M. Eneroth, J. Apelqvist, "Complexity of factors related to outcome of neuropathic and neuroischaemic/ischaemic diabetic foot ulcers: a cohort study," Diabetologia, vol. 52 no. 3, pp. 398-407, DOI: 10.1007/s00125-008-1226-2, 2009.
[19] L. Prompers, N. Schaper, J. Apelqvist, M. Edmonds, E. Jude, D. Mauricio, L. Uccioli, V. Urbancic, K. Bakker, P. Holstein, A. Jirkovska, A. Piaggesi, G. Ragnarson-Tennvall, H. Reike, M. Spraul, K. Van Acker, J. Van Baal, F. Van Merode, I. Ferreira, M. Huijberts, "Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study," Diabetologia, vol. 51 no. 5, pp. 747-755, DOI: 10.1007/s00125-008-0940-0, 2008.
[20] N. M. McGrath, B. A. Curran, "Recent commencement of dialysis is a risk factor for lower-extremity amputation in a high-risk diabetic population," Diabetes Care, vol. 23 no. 3, pp. 432-433, 2000.
[21] S. Morbach, H. Furchert, U. Gröblinghoff, "Long-term prognosis of diabetic foot patients and their limbs: amputation and death over the course of a decade," Diabetes Care, vol. 35 no. 10, pp. 2021-2027, 2012.
[22] A. M. O'Hare, C.-Y. Hsu, P. Bacchetti, K. L. Johansen, "Peripheral vascular disease risk factors among patients undergoing hemodialysis," Journal of the American Society of Nephrology, vol. 13 no. 2, pp. 497-503, 2002.
[23] M. Kaminski, N. Frescos, S. Tucker, "Prevalence of risk factors for foot ulceration in patients with end-stage renal disease on haemodialysis," Internal Medicine Journal, vol. 42, pp. e120-e128, 2012.
[24] R. A. Speckman, D. L. Frankenfield, S. H. Roman, P. W. Eggers, M. R. Bedinger, M. V. Rocco, W. M. McClellan, "Diabetes is the strongest risk factor for lower-extremity amputation in new hemodialysis patients," Diabetes Care, vol. 27 no. 9, pp. 2198-2203, DOI: 10.2337/diacare.27.9.2198, 2004.
[25] S. Lewis, D. Raj, N. J. Guzman, "Renal failure: implications of chronic kidney disease in the management of the diabetic foot," Seminars in Vascular Surgery, vol. 25 no. 2, pp. 82-88, 2012.
[26] P. P. Singh, J. D. Abbott, M. S. Lombardero, K. Sutton-Tyrrell, G. Woodhead, L. Venkitachalam, N. P. Tsapatsaris, T. C. Piemonte, R. M. Lago, M. K. Rutter, R. W. Nesto, "The prevalence and predictors of an abnormal ankle-brachial index in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial," Diabetes Care, vol. 34 no. 2, pp. 464-467, DOI: 10.2337/dc10-1734, 2011.
[27] Y. S. Yap, H. Y. Chuang, C. M. Chien, Y. K. Tai, "Relationship between peripheral artery disease and combined albuminuria and low estimatedglomerular filtration rate among elderly patients with type 2 diabetes mellitus," Diabetes and Vascular Disease Research, vol. 11 no. 1, pp. 41-47, 2014.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2014 Hassan Al-Thani et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Foot ulceration (FU) remains a serious concern for patients worldwide. We analyzed the incidence, risk factors, and outcome of FU in hemodialysis (HD) patients. A retrospective cohort study was conducted for 252 HD patients who were followed up for 5 years. Patients were categorized according to whether they developed FU or not. The FU group (17%) was older and had significantly higher incidence of nephropathy, retinopathy, peripheral (PAD), coronary artery disease (CAD), and diabetes mellitus (DM) as compared to no-FU group. FU group had higher frequency of major amputation (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Vascular Surgery, Department of Surgery, Hamad General Hospital, HMC, P.O. Box 3050, Doha, Qatar
2 Clinical Research, Trauma Surgery, Hamad General Hospital, P.O. Box 3050, Doha, Qatar; Clinical Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar; Cardiology Section, Internal Medicine, Ahmed Maher Teaching Hospital, Cairo, Egypt
3 Clinical Research, Trauma Surgery, Hamad General Hospital, P.O. Box 3050, Doha, Qatar