Full text

Turn on search term navigation

Copyright © 2017 Kemal Keskin and Abdurrahman Karamancioglu. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A train operation optimization by minimizing its traction energy subject to various constraints is carried out using nature-inspired evolutionary algorithms. The optimization process results in switching points that initiate cruising and coasting phases of the driving. Due to nonlinear optimization formulation of the problem, nature-inspired evolutionary search methods, Genetic Simulated Annealing, Firefly, and Big Bang-Big Crunch algorithms were employed in this study. As a case study a real-like train and test track from a part of Eskisehir light rail network were modeled. Speed limitations, various track alignments, maximum allowable trip time, and changes in train mass were considered, and punctuality was put into objective function as a penalty factor. Results have shown that all three evolutionary methods generated effective and consistent solutions. However, it has also been shown that each one has different accuracy and convergence characteristics.

Details

Title
Energy-Efficient Train Operation Using Nature-Inspired Algorithms
Author
Keskin, Kemal  VIAFID ORCID Logo  ; Karamancioglu, Abdurrahman
Editor
Andrea D’Ariano
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
01976729
e-ISSN
20423195
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2407638520
Copyright
Copyright © 2017 Kemal Keskin and Abdurrahman Karamancioglu. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.