This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
In recent years, urban rail transit has developed rapidly around the world due to its high capacity, safety, superior energy performance, and reliable service with sufficient punctuality [1], which is becoming increasingly important for large cities development [2]. For example, 35 cities in China have urban rail transit with total length over 4750 km in 2017 [3]. According to the Web of China Rail Transit, there will be more than 50 cities operating urban rail transit in the next few years. In 2020, the total mileage of urban rail transit in China will be 6000 km, making the rail systems an important component of urban public transportation. Around the world, more and more cities are traveling oriented to public transportation. As shown in Figure 1 (which is from Global Cities Public Transit Usage Report of moovit), urban rail transit system has attracted much attention in recent years especially in some large cities and accounts for a high proportion of public transportation. However, the quick expansion of urban rail transit networks led to the problem of larger energy consumption. Taking Beijing rail transit as an example, in 2011, the total electric consumption of Beijing urban rail transit was 750 million kwh, and 470 million kwh was used for traction energy consumption, with the proportion as high as 55% which has attracted tremendous attention in recent years (Yin et al. [4]). In 2015, it reached 1.4 billion kwh, accounting for 40% of the total operating cost of the metro[5], which was equivalent to the annual electricity consumption of 730,000 households (annual electricity consumption of one household is based on 2016 BEIJING STATISTICAL YEARBOOK from Beijing statistical information website). In the European Union (EU), for instance, transport causes approximately 31% of total greenhouse gas (GHG) emissions. Within this sector, metropolitan transportation is responsible for about 25% of the total CO2 emissions (González-Gil et al. [6]). Therefore, energy saving has become an important issue in real train operating in order to reduce the operation cost and satisfy the requirement of environment protection.
[figure omitted; refer to PDF]To reduce the energy consumption in urban rail transit, a lot of models have been developed in recent years which mainly considered the train controlling between two stations based on the kinematic equations. There are three types in general, i.e., mathematical optimization models, simulation methods, and multiple linear regression, and neural network model based on the data. Although a lot of works had been done in optimizing speed profiles, existing methods have some limitations:
Main contributions of this research can be summarized as follows:
The framework of this paper is shown in Figure 2.
[figure omitted; refer to PDF]2. Literature Review
During last years, many studies have focused on the energy-efficiency analysis of train traction; Scheepmaker et al. [23] summarized and gave a review from two aspects,
Table 1
Some typical publications about energy-efficient.
View Publication | Years | Model type | Objective | Energy consumption calculational method | Solution method | |
I | Cheng and Howlett. [9]. | 1993 | Discrete control model | Energy consumption of profile | Empirical-formula, numerical integration | Optimize control |
I | Howlett et al. [10]. | 1996 | Continuous control model | Energy consumption of profile | Empirical-formula, numerical integration | Optimize control |
I | Wong and Ho [11] | 2004 | Discrete control model | Energy consumption of profile | Genetic method | Genetic search |
I | Albrecht et al. [12] | 2013 | Continuous control model | Energy consumption of profile | Empirical-formula, numerical integration | Optimize control |
I | Albrecht, Howlett et al. [13, 14] | 2016 a&b | Continuous control model | Energy consumption of profile | Empirical-formula, numerical integration | Optimize control |
I | Yin et al. [15] | 2014 | Reinforcement learning | Energy consumption of profile | Empirical-formula, numerical integration Simulation platform | Dynamic programming |
I & II | Nasri et al. [16] | 2010 | Simulation model | Energy consumption of timetable | Empirical-formula, numerical integration Simulation platform | Simulation |
II | Sun et al. [17] | 2013 | MILP | Energy consumption of timetable | Empirical-formula, numerical integration | Genetic search |
II | Yang et al. [18] | 2015a | MILP | Energy consumption of whole line | Taking into consideration recovery energy | Genetic search |
II | Li and Lo [19, 20] | 2014 a&b | Integrated-operation model | Energy consumption of network | Empirical-formula, numerical integration | Genetic search |
II | Canca and Zarzo [21] | 2017 | MILP | Energy consumption of whole line | Empirical-formula, numerical integration | Iterative algorithm and Python+Gurobi |
II | Yin et al. [22] | 2017 | MILP | Energy consumption and the passenger waiting time | Empirical-formula, numerical integration | Lagrangian relaxation (LR)-based heuristic algorithm |
I: speed profiles/driving strategy; II: energy-efficient timetable.
Big data analytics (BDA) has increasingly attracted a strong attention of analysts, researchers and practitioners in railway transportation and engineering filed [38]. From a data-driven view, this paper mainly focuses on how to obtain the optimal speed profile based on well-developed machine learning algorithms. There are still seldom researches aiming at optimal speed profile by this proposed method.
3. Data Analysis and Preprocessing
3.1. Data Overview
During the operation of the subway, the most widely used power is electricity. Some are used for the consumption of facilities in the train, such as air conditioning, lighting, etc. The rest is for traction of metro trains. Our data resources are formed by urban rail transit train running state and corresponding energy consumption, which are derived from Changping Line of Beijing urban rail transit. The operation section of Changping Line is from the Xi’erqi station to the Changpingxishankou station, with operating mileage of 31.9 kilometers and total of 12 stations opened (as illustrated in Figure 3). In order to accurately capture the actual traction power consumption during the operation of the subway, we installed sensors and computers on the train. The total energy consumption and the energy consumptions of various electrical appliances in the train are both recorded. Then, the total consumption is subtracted from the electrical energy consumed by the electrical appliances, and the rest is the energy consumed by the traction of the subway train. The provided data covers running stage of 4 months. There are two circle running tests every night in the up and down direction. The types of recorded data are showed in Table 2.
Table 2
Overview of measurement characteristics.
Parameter | Unit | Resolution |
Speed | km/h | 0.001 |
Position | m | 0.001 |
Time | s | 0.2 |
Train weight | ton | 1 |
Current slope | 1 |
1 |
EBI speed | km/h | 0.001 |
Station spacing | m | 0.001 |
Expected acceleration of PID | (km/h)/s | 1 |
Electric energy consumption | Kwh | 1 |
3.2. Data Preprocessing
Symbols
Using these recorded data, we can draw out the running process of the urban rail transit train. Taking MingTombs-Changpingxishankou of the down direction, for instance (showed in Figure 4), the train operation process is divided into three stages. The first stage is accelerating until approaching the maximum speed limit; the second stage is fluctuating in the high-speed zone; the third stage is the deceleration braking until the train stops. Normally, differences in track conditions are caused by construction and geological reasons. There will be limited speed at different locations in each section of the urban rail transit. In this section, there are three speed limiting sections:
Train running state form is shown in Table 3 (m: the number of data recorded on an original speed profile). A speed profile has three elements, speed, time, and distance. The time interval between records in the table is 0.2 seconds. However, the running time between two stations varies from almost one to several hundred seconds. This means that a speed profile may be made up of thousands of records. We need to calculate the energy consumption from the profile, that is to say, to find the relationship between energy consumption and the thousands of data records, which is the so-called “high-dimensional” data in statistics.
Table 3
Part types of the original data.
Time | Velocity(km/h) | Distance(m) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Although machine learning algorithms under the back of big data are suitable for dealing with high-dimensional data, for extremely high-dimensional situations, large amounts of data are needed as training sets, and calculation precision is hard to be gained [39]. Therefore, we choose dimensionality reduction for the limitation of data quantity. Not only can the algorithm achieve good training effect, but also the accuracy of the original high-dimensional data can be reserved.
Process of reducing the dimension is as follows:
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
3.3. Extraction of Training Data Set and Testing Data Set
After processing above,
Table 4
Part of the velocity series after being processed.
|
|
|
|
|
|
|
|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 9.18 | 4.64 | 21 | 9.657 | 5 | 9.9 | 5.19 |
3 | 14.256 | 9.33 | 28 | 14.811 | 10 | 14.94 | 10.16 |
4 | 18.612 | 14.928 | 34 | 18.659 | 15 | 19.296 | 16 |
5 | 21.492 | 19.462 | 38 | 21.824 | 20 | 22.248 | 20.698 |
6 | 24.408 | 24.646 | 42 | 24.593 | 25 | 25.128 | 26.042 |
7 | 26.568 | 28.954 | 45 | 27.042 | 30 | 27.252 | 30.468 |
8 | 28.764 | 33.622 | 48 | 29.371 | 35 | 29.484 | 35.26 |
9 | 30.888 | 38.652 | 51 | 31.442 | 40 | 31.608 | 40.408 |
10 | 33.012 | 44.04 | 54 | 33.419 | 45 | 33.804 | 45.918 |
11 | 35.172 | 49.786 | 57 | 35.25 | 50 | 35.892 | 51.78 |
12 | 36.576 | 53.812 | 59 | 36.991 | 55 | 37.296 | 55.884 |
13 | 37.944 | 57.992 | 61 | 38.617 | 60 | 38.664 | 60.14 |
14 | 40.068 | 64.554 | 64 | 40.197 | 65 | 40.716 | 66.816 |
15 | 41.436 | 69.118 | 66 | 41.709 | 70 | 42.156 | 71.46 |
16 | 42.804 | 73.838 | 68 | 43.134 | 75 | 43.488 | 76.254 |
17 | 44.172 | 78.708 | 70 | 44.528 | 80 | 44.856 | 81.2 |
18 | 45.576 | 83.732 | 72 | 45.897 | 85 | 46.224 | 86.3 |
19 | 46.944 | 88.908 | 74 | 47.213 | 90 | 47.592 | 91.552 |
20 | 48.204 | 94.23 | 76 | 48.368 | 95 | 48.78 | 96.94 |
The speed profile sequence
Table 5
Data format of training and testing set.
Serial number | |
|
… | |
|
Time | Energy consumption |
1 |
|
|
… | |
|
|
|
2 |
|
… | … | … | … | |
|
… | … | … | … | … | … | … | … |
q-1 |
|
…. | … | … | … | … |
|
q |
|
|
… | |
|
|
|
4. Formulation
In this section, a data-driven optimization model (DDOM) is proposed to optimize the urban rail transit traction energy consumption, which discretizes velocity profile and describes the relation between velocity profile and energy consumption as a complex mapping-relation.
4.1. Symbols and Assumptions
Parameters
Assumption. During the process of
Derived by formulas (1)-(3), we get the velocity sequence
4.2. Train Operation Constraints
During the running state from one station to a neighboring station, some constraints should be satisfied.
Speed limit (SL) constraints: the speed limit of the section at
Acceleration constraints: in order to satisfy the comfort of passengers on the train, the acceleration needs to be kept in a suitable range. As shown in formula (7)-(8),
Train operation time constraints: transportation efficiency also should be taken into account. Therefore, the train running time
where
Train operation distance constraints: to ensure that the train can reach the station accurately, the total displacement of the train in the section must be equal to the length of the section.
4.3. Objective Function
When the section running time of train is
5. A Greedily Heuristic Algorithm for Model
In this section, firstly two energy consumption calculation methods based on machine learning algorithm are introduced. Then, by analysis the characters of them, an integrated optimization flow is developed with a combination of their merits.
5.1. Energy Consumption Calculation Based on Machine Learning Algorithm
From the view of data-driven method, urban rail transit train runs within each section and produces a traction speed profile that corresponds to an energy consumption value. Although the factors affecting the energy consumption of each train are not only related to the speed profile, the external factors are determined once the operational section is fixed. Moreover, the transmission characteristic of the train is determined when the type of train is selected; then the energy consumption is only related to the speed profile during the traction process. Therefore, the speed profile becomes the key to the energy consumption of train traction.
In this paper, two typical machine learning algorithms (RFR and SVR) are introduced, where RFR is utilized to get velocity points’ importance degrees in different positions, which can be responsible for obtaining these pairs space-speed with a major contribution to the energy consumption. And, SVR is employed to calculate the energy consumption of the profile. The programming environment is Python 3 and its machine learning module is scikit-learn.
5.1.1. Random Forest Regression (RFR) Algorithm Module
Random forest is a kind of ensemble learning algorithm, which uses multiple trees to train and predict a classifier, and also can be used for regression [40]. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001, which added an additional layer of randomness to bagging. In addition to constructing each tree using a different bootstrap sample of the data, random forests change how the classification or regression trees are constructed. They are a powerful nonparametric statistical method allowing consideration in a single and versatile framework regression problem [41]. The random forest optionally produces two additional pieces of information: a measure of the importance of the predictor variables and a measure of the internal structure of the data (the proximity of different data points between one and another). In this paper, we can take advantages of this module to get velocity points’ importance degree in different positions which can be used in heuristic solution process for model.
Evaluation and Analysis of RFR. In the utilization of RFR algorithm, two important parameters should be calibrated: the number of split attributes (Mtry) and number of decision trees (Ntree). For simplicity, the enumeration method is used to traverse the two parameters. The convergence process is shown in Figure 7 over ten experiments. We can see that, when Ntree
[figures omitted; refer to PDF]
In addition to the high precision evaluation ability, we also get importance degrees of the velocity in different displacements during the traction energy consumption of the urban rail transit. We can find that the speed at which position is more significant to the energy consumption in a section, which indicates contributions to energy consumption of pairs space-speed. For instance, in the section of MingTombs-Changpingxishankou, section length is 1230 m, the importance degrees at different positions are shown in Figure 9.
[figure omitted; refer to PDF]5.1.2. Support Vector Machine Regression (SVR) Algorithm Module
Support vector machine (SVM) algorithm is from statistical learning theory (SLT), which is based on the structural risk minimization principle that can avoid excessive learning problems and ensure the generalization ability of the model. In essence, it can solve the convex quadratic programming problem and avoid falling into the local minimum. It can be applied not only to classification problems but also to the case of regression [42]. Therefore, it can be divided into support vector classification (SVC) and support vector regression (SVR). Because of its solid theoretical foundation and its complete theoretical derivation, support vector machine is an effective tool in dealing with small samples, nonlinear, local issues. In this paper, it is applied to calculate the energy consumption based on real data.
Before using the SVR, the first step requires the determination of the kernel functions. The second step is to optimize parameters corresponding to different kernel functions. In this paper, three typical kernel functions are verified: radial basis kernel function (RBF), linear kernel function (LINEAR), and polynomial kernel function (POLY).
Comparing the performance of the three kernel functions, average error of the RBF kernel function is the best, which means that the traction energy consumption can be calculated under the optimal parameter conditions.
5.1.3. Analysis of the Two Machine Learning Algorithms
For RFR algorithm, stable performance is in the data set, and the evaluation results are satisfactory. At the same time, the more momentous point is that the importance degrees of the velocity points in different positions can be sorted, which will be a valid guiding to the optimization control of the speed profile. For example, we can adjust the speed with high importance degree in the speed profile optimization process. As for the SVR algorithm, although the performance is not good in some kernel conditions, the ability to calculate in the RBF kernel function is also serviceable enough. For optimizing the speed profile of an urban rail transit train, we should find a speed profile that is not less than the existing energy consumption or is even lower than the existing energy consumption. However, the RFR algorithm has a fatal flaw: random forest cannot make the output beyond the range of data set, which may lead to overfitting in modeling of some specific data with noise. Therefore, the design of urban rail transit speed profile optimization algorithms could be beneficial to the combination virtues of the SVR and RFR.
5.2. Optimization Process
Form the view of discrete train speed profile optimization, the key problem is how to design a method to get a more energy-efficient profile; thus a group of combinations
Parameters
Step 1.
In the case of optimal parameters, random forest regression (RFR) Algorithm Module (Section 5.1.1)) is used to obtain the importance degree of speed series
Step 2.
Initialize the operation time
Step 3.
In the case of
Step 4.
Then, we can get a new profile after adjustment of
Formulas (12) and (13) show the calculation of
Step 5.
If
Step 6.
If
Step 7.
Get all the energy consumption
Finally, algorithm flow is shown in Figure 13.
[figure omitted; refer to PDF]6. Numerical Experiment
6.1. Section Parameters
Section Parameters
We take Changping Line MingTombs-Changpingxishankou section of down direction as a numerical experiment to explain the optimization process, and the section parameters are listed as above. And there are two cases in different intervals. A complete operation state is showed in Figure 14.
[figure omitted; refer to PDF]6.2. Optimization Result
Case 1.
Case 2.
[figures omitted; refer to PDF]
Operation sections with different distances should not have the same discrete interval. For longer section, the interval could be bigger. For example, distance of Xi’erqi-Life Science Park is 5455 m, and interval could be 200 m. In addition, the comparison of profile before and after optimization is shown in Figures 17(a)–17(j). Optimization results of other operation sections are listed in Table 6. We can see that, in some section, the maximum energy saving is 5.08% (in the section Shahe to Shahe University Park), which is a good performance. And, for a 31.9km length with 12 stations train line, energy saving is 2.84%. The improvement may look modest when compared with previous researches (most claim saving energy above 4%). However, our improvement is compared with a real-world result that had already been imposed with an optimal control (traditional train optimal control with on the basis of Pontryagin maximum principle). There is an ATO (automatic train system, which is equipped with optimal control) in Beijing Changping Line and Yizhuang Line. Yizhuang Line and Changping Line have some similar features, train type, number of organized group, passenger intensity, power supply mode, and so on. A well-designed method in real world that is applied into Yizhuang Line can achieve average saving energy blow 3% from the operator’s statement. Therefore, the improvement based on an ATO profile which makes it look modest is reasonable. Besides, for different section, there are different improvements. The results may be triggered by many factors, like different section external environments (radius of curve, slope, air humidity, and so on). The optimized control effects in different sections are key to the room for improvement. If the room for improvement is limited, the real improvement may be also limited. Therefore, there is no quantitative result to illustrate the different improvements in each section.
Table 6
Optimization results of other sections.
Section name | Minimum energy consumption of actual data(KWh) | After optimization (KWh) | Net energy saving(KWh) | Energy saving (%) | Section length(m) | interval(m) |
Xi’erqi-Life Science Park | 28 | 26.94 | 1.06 | 3.79 | 5455 | 200 |
Life Science Park-Zhuxinzhuang | 19 | 18.44 | 0.56 | 2.95 | 2405 | 100 |
Zhuxinzhaung-Gonghuacheng | 19 | 18.36 | 0.64 | 3.39 | 3810 | 200 |
Gonghuacheng-Shahe | 20 | 19.13 | 0.87 | 4.35 | 2037 | 100 |
Shahe-Shahe University Park | 22 | 20.88 | 1.12 | 5.08 | 1967 | 100 |
Shahe University Park-Nanshao | 30 | 29.45 | 0.55 | 1.83 | 5364 | 200 |
Nanshao-Beishaowa | 14 | 13.55 | 0.45 | 3.21 | 2003 | 100 |
Beishawa-Changping dongguan | 16 | 15.66 | 0.34 | 2.13 | 1687 | 100 |
Changping dongguan-Changping | 22 | 21.58 | 0.42 | 1.91 | 2439 | 100 |
Changping-MingTombs | 39 | 38.56 | 0.44 | 1.13 | 3522 | 200 |
MingTombs-Changpingxishankou | 21 | 20.35 | 0.65 | 3.10 | 1230 | 50 |
|
||||||
Total | 250 | 242.9 | 7.1 | 2.84 | 31964 | - |
|
||||||
Average value | 22.73 | 22.08 | 0.65 | - | - | - |
[figures omitted; refer to PDF]
7. Conclusion
Reducing train traction energy consumption is one of the efficient ways to cut energy cost in urban rail transit systems. And to protect the environment, the optimization of urban rail transit traction energy conservation has been a significant task in urban rail transit operation and management. The traction energy consumption of a single train is related to the speed profile between stations. When energy-efficient profiles are applied in every section, there will be a positive effect on reducing energy consumption of the urban rail transit system. Therefore, train speed profile optimization is a fundamental work.
In this paper, the speed profile optimization problem is discretized, and the decision variables of the speed profile become a series of space-speed points. From this viewpoint, a data-driven urban rail transit train speed profile optimization model (DDOM) is proposed to describe the relationship between profiles and energy consumption. Two machine learning algorithms, namely, random forest regression (RFR) and support vector regression (SVR), are taken into account. RFR is applied to get the important degree of velocity in positions, and the degree is utilized as heuristic information to decide the optimization order of velocity in different positions. SVR is used to calculate energy consumption of profiles with a high accuracy (95%). Combined with the advantages of the two algorithms, an integrated heuristic greedy optimization algorithm is developed to solve the model, which can reduce energy consumption by 2.84%. In some theory research, energy conservation percentage is higher than our results. However, few are verified based on the real-world data. Furthermore, our methods may be quite simple and can be applied to practice easily.
Nevertheless, because the data samples are far from enough, when adjusting velocity in different positions to get a new profile in the optimization process, range of velocity change is limited. There is still some room for an improvement on the basis of the optimization results. Although there are many different views, the data-driven method is new to the problem, and applying machine learning algorithms to the field of energy saving in urban rail transit is the innovation. Future research can be focused on the following areas. Firstly, a further improved algorithm for a different heuristic strategy could be studied. For instance, based on the data machine learning method, the regenerative electricity consumption in the braking process may be reused in the trains from neighboring sections. Thus, instead of optimizing one single train speed profile in each section separately, train speed profiles from neighboring sections should be taken into account. Secondly, in the urban rail transit networks, if power supply in the network nodes (transfer stations) is transmitted from the same transformer substation, the energy-saving optimization of trains can be extended to the urban rail transit network.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work is supported by the China National Funds for Distinguished Young Scientists (71525002), National Nature Science Foundation of China (71890972/71890970, 71771018, and 71621001), and Beijing Municipal Natural Science Foundation (L181008).
[1] X. Guo, J. Wu, J. Zhou, X. Yang, D. Wu, Z. Gao, "First-train timing synchronization using multi-objective optimization in urban transit networks," International Journal of Production Research,DOI: 10.1080/00207543.2018.1542177, 2018.
[2] L. Kang, X. Zhu, H. Sun, J. Wu, Z. Gao, B. Hu, "Last train timetabling optimization and bus bridging service management in urban railway transit networks," OMEGA - The International Journal of Management Science, vol. 74 no. 1, pp. 31-44, DOI: 10.1016/j.omega.2018.04.003, 2018.
[3] X. Yang, H. Yin, J. Wu, Y. Qu, Z. Gao, T. Tang, "Recognizing the critical stations in urban rail networks: an analysis method based on the smart-card data," IEEE Intelligent Transportation Systems Magazine, vol. 11 no. 1, pp. 29-35, DOI: 10.1109/MITS.2018.2884492, 2019.
[4] J. Yin, Y. Wang, T. Tang, J. Xun, S. Su, "Metro train rescheduling by adding backup trains under disrupted scenarios," Frontiers of Engineering Management, vol. 4 no. 4, pp. 418-427, 2017.
[5] T. Tang, J. Xun, "Research on energy-efficient driving strategy in Beijing Yizhuang line," Journal of BeijingJiaoTong University, vol. 40 no. 4, pp. 20-24, 2016.
[6] A. González-Gil, R. Palacin, P. Batty, J. P. Powell, "A systems approach to reduce urban rail energy consumption," Energy Conversion and Management, vol. 80, pp. 509-524, DOI: 10.1016/j.enconman.2014.01.060, 2014.
[7] H. Yin, J. Wu, Z. Liu, H. Yin, Y. Qu, H. Sun, "Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation," Applied Mathematical Modelling, vol. 72 no. 8, pp. 337-355, DOI: 10.1016/j.apm.2019.02.003, 2019.
[8] R. Genuer, J.-M. Poggi, C. Tuleau-Malot, N. Villa-Vialaneix, "Random forests for big data," Big Data Research, vol. 9 no. 3, pp. 28-46, DOI: 10.1016/j.bdr.2017.07.003, 2017.
[9] J. X. Cheng, P. Howlett, "A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains," IEEE Transactions on Automatic Control, vol. 38 no. 11, pp. 1730-1734, DOI: 10.1109/9.262051, 1993.
[10] P. Howlett, "Optimal strategies for the control of a train," Automatica, vol. 32 no. 4, pp. 519-532, DOI: 10.1016/0005-1098(95)00184-0, 1996.
[11] K. Wong, T. Ho, "Coast control for mass rapid transit railways with searching methods," IEE Proceedings - Electric Power Applications, vol. 151 no. 5, pp. 365-376, DOI: 10.1049/ip-epa:20040346, 2004.
[12] A. R. Albrecht, P. G. Howlett, P. J. Pudney, X. Vu, "Energy-efficient train control: from local convexity to global optimization and uniqueness," Automatica, vol. 49 no. 10, pp. 3072-3078, DOI: 10.1016/j.automatica.2013.07.008, 2013.
[13] A. Albrecht, P. Howlett, P. Pudney, X. Vu, P. Zhou, "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, vol. 94, pp. 482-508, DOI: 10.1016/j.trb.2015.07.023, 2016.
[14] A. Albrecht, P. Howlett, P. Pudney, X. Vu, P. Zhou, "The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques," Transportation Research Part B: Methodological, vol. 94, pp. 509-538, DOI: 10.1016/j.trb.2015.07.024, 2016.
[15] J. Yin, D. Chen, L. Li, "Intelligent train operation algorithms for urban rail transit by expert system and reinforcement learning," IEEE Transactions on Intelligent Transportation Systems, vol. 15 no. 6, pp. 2561-2571, DOI: 10.1109/TITS.2014.2320757, 2014.
[16] A. Nasri, M. Fekri Moghadam, H. Mokhtari, "Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems," International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1218-1221, 2010.
[17] H. Sun, J. Wu, H. Ma, X. Yang, Z. Gao, "A bi-objective timetable optimization model for urban rail transit based on the time-dependent passenger volume," IEEE Transactions on Intelligent Transportation Systems, vol. 20 no. 2, pp. 604-615, DOI: 10.1109/TITS.2018.2818182, 2019.
[18] X. Yang, A. Chen, J. Wu, Z. Gao, T. Tang, "An energy-efficient rescheduling approach under delay perturbations for metro systems," Transportmetrica B: Transport Dynamics, vol. 7 no. 1, pp. 386-400, 2019.
[19] X. Li, K. Lo Hong, "An energy-efficient scheduling and speed control approach for metro rail operations," Transportation Research Part B: Methodological, vol. 64, pp. 73-89, DOI: 10.1016/j.trb.2014.03.006, 2014.
[20] X. Li, H. K. Lo, "Energy minimization in dynamic train scheduling and control for urban rail transit rail operations," Transportation Research Part B: Methodological, vol. 70 no. 1, pp. 269-284, DOI: 10.1016/j.trb.2014.09.014, 2014.
[21] D. Canca, A. Zarzo, "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, vol. 102, pp. 142-161, DOI: 10.1016/j.trb.2017.05.012, 2017.
[22] J. Yin, L. Yang, T. Tang, Z. Gao, B. Ran, "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, vol. 97, pp. 182-213, DOI: 10.1016/j.trb.2017.01.001, 2017.
[23] G. M. Scheepmaker, R. M. Goverde, L. Kroon, "Review of energy-efficient train control and timetabling," European Journal of Operational Research, vol. 257 no. 2, pp. 355-376, DOI: 10.1016/j.ejor.2016.09.044, 2017.
[24] P. G. Howlett, I. P. Milroy, P. J. Pudney, "Energy-efficient train control," Advances in Industrial Control, 1995.
[25] P. Howlett, "A new look at the rate of change of energy consumption with respect to journey time on an optimal train journey," Transportation Research Part B: Methodological, vol. 94, pp. 387-408, DOI: 10.1016/j.trb.2016.10.004, 2016.
[26] G. M. Scheepmaker, R. M. P. Goverde, "The interplay between energy-efficient train control and scheduled running time supplements," Journal of Rail Transport Planning and Management, vol. 5 no. 4, pp. 225-239, DOI: 10.1016/j.jrtpm.2015.10.003, 2015.
[27] X. Yang, X. Li, B. Ning, T. Tang, "A survey on energy-efficient train operation for urban rail transit," IEEE Transactions on Intelligent Transportation Systems, vol. 17 no. 1,DOI: 10.1109/TITS.2015.2447507, 2016.
[28] Z. Tian, P. Weston, N. Zhao, S. Hillmansen, C. Roberts, L. Chen, "System energy optimisation strategies for metros with regeneration," Transportation Research Part C: Emerging Technologies, vol. 75, pp. 120-135, DOI: 10.1016/j.trc.2016.12.004, 2017.
[29] S. Yang, J. Wu, X. Yang, F. Liao, D. Li, Y. Wei, "Analysis of energy consumption reduction in metro system using rolling stop-skipping patterns," Computers & Industrial Engineering, vol. 127 no. 1, pp. 129-142, DOI: 10.1016/j.cie.2018.11.048, 2019.
[30] R. Chevrier, P. Pellegrini, J. Rodriguez, "Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times," Transportation Research Part C: Emerging Technologies, vol. 37, pp. 20-41, DOI: 10.1016/j.trc.2013.09.007, 2013.
[31] P. Wang, R. M. P. Goverde, "Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines," Transportation Research Part B: Methodological, vol. 105, pp. 340-361, DOI: 10.1016/j.trb.2017.09.012, 2017.
[32] L. Wang, L. Yang, Z. Gao, Y. Huang, "Energy-saving operation approaches for urban rail transit systems," Frontiers of Engineering Management, vol. 4 no. 4, pp. 408-417, 2017.
[33] N. Zhao, C. Roberts, S. Hillmansen, Z. Tian, P. Weston, L. Chen, "An integrated metro operation optimization to minimize energy consumption," Transportation Research Part C: Emerging Technologies, vol. 75, pp. 168-182, DOI: 10.1016/j.trc.2016.12.013, 2017.
[34] P. G. Howlett, P. J. Pudney, X. Vu, "Local energy minimization in optimal train control," Automatica, vol. 45 no. 11, pp. 2692-2698, DOI: 10.1016/j.automatica.2009.07.028, 2009.
[35] Y. Huang, H. Yu, J. Yin, H. Hu, S. Bai, X. Meng, M. Wang, "An integrated approach for the energy-efficient driving strategy optimization of multiple trains by considering regenerative braking," Computers & Industrial Engineering, vol. 126, pp. 399-400, DOI: 10.1016/j.cie.2018.09.041, 2018.
[36] S. Yang, J. Wu, X. Yang, H. Sun, Z. Gao, "Energy-efficient timetable and speed profile optimization with multi-phase speed limits: theoretical analysis and application," Applied Mathematical Modelling, vol. 56 no. 4, pp. 32-50, DOI: 10.1016/j.apm.2017.11.017, 2018.
[37] P. M. Fernández, C. G. Román, R. I. Franco, "Modelling electric trains energy consumption using neural networks," Transportation Research Procedia, vol. 18, pp. 59-65, DOI: 10.1016/j.trpro.2016.12.008, 2016.
[38] F. Ghofrani, Q. He, R. M. P. Goverde, X. Liu, "Recent applications of big data analytics in railway transportation systems: A survey," Transportation Research Part C: Emerging Technologies, vol. 90, pp. 226-246, DOI: 10.1016/j.trc.2018.03.010, 2018.
[39] R. S. Michalski, I. Bratko, M. Kubat, "Machine learning and data mining methods and application," ACM SIGKDD Explorations Newsletter, vol. 2 no. 2, pp. 110-114, 2004.
[40] L. Breiman, "Random forests," Machine Learning, vol. 45 no. 1,DOI: 10.1023/A:1010933404324, 2001.
[41] A. Liaw, M. Wiener, "Classification and regression by random forest," R News, vol. 23 no. 23, pp. 18-22, 2002.
[42] D. Basak, S. Pal, "Support vector regression," Statistics and Computing, vol. 11 no. 10, pp. 203-224, 2007.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 Kang Huang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement of reducing operation cost and protecting the environment. Traditional methods on this problem mainly focused on formulating kinematical equations to derive the speed profile and calculate the energy consumption, which caused the possible errors due to some assumptions used in the empirical equations. To fill this gap, according to the actual speed and energy data collected from the real-world urban rail system, this paper proposes a data-driven model and integrated heuristic algorithm based on machine learning to determine the optimal speed profile with minimum energy consumption. Firstly, a data-driven optimization model (DDOM) is proposed to describe the relationship between energy consumption and discrete speed profile processed from actual data. Then, two typical machine learning algorithms, random forest regression (RFR) algorithm and support vector machine regression (SVR) algorithm, are used to identify the importance degree of velocity in the different positions of profile and calculate the traction energy consumption. Results show that the calculation average error is less than 0.1 kwh, and the energy consumption can be reduced by about 2.84% in a case study of Beijing Changping Line.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China; School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
2 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China
3 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
4 Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5, Bus 6, 3590 Diepenbeek, Belgium
5 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; Beijing Transport Institute, Beijing 100073, China