This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
Acute myeloid leukemia (AML) is a genetically heterogeneous disease characterized by malignant clonal proliferation of immature myeloid cells in the bone marrow, peripheral blood, and occasionally other body tissues [1, 2]. It is the most common acute leukemia in adults and encompasses 15–20% of cases in children [2]. While the disease is most commonly found in individuals over 60 years, AML also occurs in younger people and occasionally may even be present at birth [1, 2]. Environmental factors that increase the risk of developing AML include smoking, benzene exposure, and chemotherapy or radiotherapy treatment [1, 2]. Preceding myelodysplastic syndrome (MDS) or myeloproliferative neoplasm (MPN) may also develop into AML [3]. Although highly variable, the outlook for most AML subtypes is dismal, with an overall 5-year survival rate of approximately 25% [1]. The genetic and epigenetic profile of the malignant cells influences the likelihood of achieving remission and risk of relapse [4]. A greater understanding of the underlying genetic and epigenetic processes may provide insight into the mechanism of leukemogenesis in AML, as well as offering prognostic information and potential therapeutic targets. The prognostic implications of many molecular mutations in AML are well reported [5]. However, the role of mutations in genes with epigenetic function is less clearly understood [6–8]. This literature review, therefore, aims to examine the pathological role and prognostic implications of mutations in epigenetic modifying genes.
2. Genetics and Risk Stratification in AML
Many patients with AML will have cytogenetic aberrations which can be detected through karyotyping or fluorescent in situ hybridization (FISH) [9–11]. Risk stratification—into low, intermediate, or high risk groups—can then be carried out according to the cytogenetic profile of the patient [9, 10]. However, there is variation between different cooperative groups as to the correct stratification of different mutations [1]. Furthermore, nearly half of the patients have cytogenetically normal (CN) AML and are ascribed to the intermediate risk category despite significant heterogeneity [5]. It is clear, therefore, that molecular mutational analysis has the potential to improve prognostication stratification systems. Currently, only a limited selection of genetic mutations is included in widely used prognostic stratification models—in the European LeukemiaNet (ELN) system, for example, NPM1, FLT3-ITD, and CEBP
3. The Two-Hit Hypothesis
For many years, the accepted model of leukemogenesis was the “two-hit hypothesis,” which suggested that two different types of genetic mutation were required for malignant transformation of a myeloid precursor [8, 14]. Class I mutations were thought to lead to uncontrolled cellular proliferation and evasion of apoptosis and included mutations conferring constitutive activity to tyrosine kinases or dysregulation of downstream signaling molecules (in genes such as BCR-ABL, Flt-3, c-KIT, and RAS) [8, 14]. Class II mutations, such as the translocations associated with the core-binding factor (CBF) leukemias, were associated with inhibition of differentiation including key transcription factors, such as CBF and retinoic acid receptor alpha (RAR
This hypothesis is supported by the observation that a single mutation alone does not appear to be adequate to engender acute leukemic transformation. Leukemia-associated genetic aberrations (such as CBF translocations) can be found in peripheral and cord blood in a proportion of healthy individuals [15, 16]. Similarly, induced CBF mutations in murine models are not sufficient to induce malignant transformation, despite resulting in increased self-renewal capacity and reduced differentiation [17]. Mice with CBF mutations have been found to only develop a leukemic syndrome when exposed to a further mutagen [18]. Additionally, rare familial leukemia syndromes, involving CEBP
Recent research highlighting the presence of epigenetic modifications to the AML genome suggests that Class I and II mutations are only one part of a more complex picture [8, 21]. Increasingly sophisticated methods of examining the human genome are highlighting mutations which previously remained undetected [8]. Novel mutations in genes that are related to epigenetic control of the genome, which encompasses DNA methylation (see Figures 2 and 3) and histone modification (see Figures 4 and 5), have been found in a significant proportion of AML patients [8]. Furthermore, modifications to the epigenome itself, such as localized CpG hypermethylation (see Figure 3) and global hypomethylation, are being examined in greater depth [1, 22–24]. Many of these mutations affecting epigenetic regulators are not regarded as belonging to Class I or Class II, suggesting that the “two-hit model” is no longer adequate [8]. The fact that some other mutations occurring in AML do not have a clear class (such as trisomy 22, which is well recognized in inv(16) leukemia yet has an uncertain role in leukemogenesis) further indicates that the “two-hit” theory is an oversimplification [8, 21]. Moreover, there is evidence that there is also a temporal component to leukemogenesis; mutations have to occur at a particular point in cell development, and in a particular order, to allow for leukemic transformation [16, 21, 25]. This has been reported, for example, in acute promyelocytic leukemia (APL). The PML-RAR
4. Epigenetic Regulation of the Genome
Epigenetic regulation refers to modulation of genetic transcription and expression which does not alter the genetic code [7]. Epigenetic modifications can be transient or physiologically irreversible and play key roles in developmental patterning in the embryo [7, 26]. Following embryogenesis, epigenetic changes continue throughout an organism’s life [7]. The two main mechanisms of epigenetic regulation in the cell are posttranslational histone modifications (see Figure 4), discussed later, and DNA methylation and hydroxymethylation, discussed below [6, 7, 24, 27].
DNA methylation is one of the key epigenetic signaling methods that facilitate control of gene expression in eukaryotic cells. Methylation patterns are known to have crucial roles in embryonic patterning, X-inactivation, and genomic imprinting, as demonstrated by an early lethal effect in DNA methyltransferase- (DNMT-) null mice [22]. Control of gene expression is derived through methylation of cytosine residues in CpG sites—regions where a cytosine residue is adjacent to a guanine residue [8, 22]. Mammals, including humans, show global methylation patterns, that is, methylation of genomic, transposon, and intergenic sequences [23]. Regions with a high density of CpG sites are known as CpG islands, and these are associated with the promoter regions of 50% of genes in humans [7, 22]. Cytosine methylation of promoter sites is associated with recruitment of corepressor complexes and reduced gene expression [28]. Methylation of genes associated with maintenance of stem cell status in hematopoietic cells, such as homeobox A9 (HOXA9) and meis homeobox 1 (MEIS1), increases as these cells differentiate, and demethylation occurs in genes concerned with differentiation of specific cell lines [26]. While non-CpG island methylation is reversible, methylation of CpG islands persists through mitosis and is only physiologically reversible in the embryo [7].
Hydroxylation of methylated cytosine residues is a mechanism by which non-CpG island methylation can be reversed and is catalyzed by the enzymes encoded by the genes TET1-3. Hydroxymethylated DNA is unable to bind to proteins that repress transcription, thus releasing the inhibitory effect of DNA methylation on the genome [29]. Leukemogenesis has been associated with both hypo- and hypermethylation of CpG islands at different loci and also with global methylation changes, although the pathological implications remain unclear.
5. DNA Methylation and AML
It is evident that methylation patterns play a role in altering expression of genes crucial to leukemogenesis (see Figures 2 and 3). Figueroa et al. carried out DNA methylation profiling of 344 AML samples and found that subjects could be separated into 16 subclasses according to methylation signatures [24]. These subclasses often reflected cytogenetic or molecular subgroups: PML-RAR
The group also identified a group of 45 genes which were aberrantly methylated in the majority of AML cases compared to normal bone marrow cells. This may reflect a shared epigenetic patterning process in leukemogenesis or the methylation profile of leukemia-permissive cells [24]. Genes coding for tumor suppressors, nuclear import proteins, transcription factors, factors associated with apoptosis, and a regulator of myeloid cytokines were included in the 45 genes aberrantly methylated in the AML cells [24]. This finding has been supported by evidence from other research groups who identified a core of hypermethylated genes which were present in all subclasses of AML analysed [24, 30, 31]. Downregulation of gene expression was associated with the hypermethylated genes identified in the majority of the AML cohort. These findings indicate that perturbation of these genes through DNA methylation is likely to be necessary, though probably not sufficient for leukemogenic transformation [24]. In addition to methylation of promoter CpG islands, Akalin et al. found evidence of specific and distinct DNA methylation patterns in coding and noncoding CpG residues [30], while Saied et al. found the AML cells to be only 2.7% less globally methylated than controls [23]. Consequently, further research into DNA methylation, both global and localized, may highlight key leukemogenic pathways that have been overlooked by cytogenetic and molecular analysis.
5.1. DNMT3A
The finding of recurrent mutations in enzymes associated with DNA methylation in AML cells further indicates that aberrant epigenetic modulation of the genome has a pathological role in leukemogenesis. Mutations in DNMT3A (DNA methyltransferase 3A), an enzyme concerned with de novo methylation of CpG dinucleotides, are among the commonest somatic mutations, occurring in 15–25% of AML [8, 32, 33]. DNMT3A mutations have also been found in MDS and MPN and remain detectable after leukemic transformation suggesting that these mutations occur early in clonal evolution [34]. These mutations have also been found to be associated with M4/M5 FAB subtype, greater age, lower overall survival, and concurrent mutations including FLT3, NPM1, and IDH-1/IDH-2 [8, 32, 35, 36].
It is currently uncertain as to whether methylation or gene expression patterns are altered in
While the evidence for a direct modulation of gene expression by mutated DNMT3A is currently lacking, there may be an indirect effect through aberrant methylation of nonpromoter sites. DNMT3A-mediated methylation of nonpromoter and nonproximal promoter regions was found, unexpectedly, to increase expression of genes associated with postnatal neurogenesis in mice, perhaps through opposition of polycomb repression [41]. It is evident, therefore, that the impact of DNMT3A mutations on methylation patterns and proximal and distant control of gene expression is complex and poorly understood.
While the exact mechanism remains obscure, it is likely that DNMT3A mutations play a significant role in the development of leukemogenesis. Krönke et al. analyzed 53 NPM-
In addition to a putative role in the initiation of leukemogenesis, there is also evidence to suggest that mutations in genes concerned with DNA methylation and hydroxylation (DNMT3A, TET2, and IDH1/2) may play a role in promoting therapy resistance and relapse. Wakita et al. found that, unlike mutations considered to be “first hit” mutations, such as NPM1 and CEBPA, DNMT3A mutations were always still detectable at relapse [43]. Moreover, the early presence of DNMT3A mutations was associated with a higher incidence of FLT3-ITD positive clones at relapse [43]. It is possible that mutations in epigenetic modifiers result in genetic instability and promote both acquisition of novel FLT3-ITD mutations and the expansion of existing FLT3-ITD positive clones [43]. However, the role of DNMT3A mutations in genetic instability is also uncertain, as a number of studies have reported no increase in somatic mutations in
The exact association between prognosis and DNMT3A mutations is a subject of some debate: Marcucci et al. found that non-R882 mutations were associated with an almost threefold increased risk of relapse or death (
Interestingly, the recurrent favorable risk genetic translocations, t(8;21), inv(16), and t(15;17), are rarely, if ever, seen in conjunction with DNMT3A mutations [32]. The fact that these genetic lesions appear to be mutually exclusive with DNMT3A may suggest that they have similar roles in leukemogenesis, and so the occurrence of one is unnecessary if the other is already present. However, if this is the case, then it is unclear why the prognostic significance of the DNMT3A mutation is so much more adverse than the favorable risk translocations.
6. DNA Hydroxymethylation and AML
6.1. TET2
Other epigenetic modifiers that can be mutated in AML include TET2, IDH1, and IDH2. These mutations alter the epigenome through modulation of hydroxymethylation, and like DNMT3A, have been found to persist in AML from diagnosis to relapse [43]. TET 1-3 gene products are known to modulate hydroxymethylation by catalyzing the conversion of 5-methylcytosine to 5-hydroxymethylcytosine [29]. Mutations in TET2 have been detected in 7–23% of AML and in 10–20% of MPN/MDS [8, 33, 46–48]. TET2 and IDH mutations appear to be mutually exclusive. TET2 mutations have been found to occur in conjunction with other significant mutations such as NPM1, RAR
It is thought that TET2 mutations are an early event in leukemogenesis and perhaps may even initiate the malignant process [29, 46, 53]. TET2 mutations may arise before or after JAK2 mutations are acquired in MPN and have also been found to occur for the first time in MPN undergoing leukemic transformation [47, 54]. Although the exact role of epigenetic changes resulting from TET2 mutations in leukemogenesis is uncertain, it is likely that TET2-mediated hydroxymethylation plays a pleiotropic role in modulation of self-renewal and differentiation [51, 52]. It has been observed that TET2 loss of function leads to increased replating activity in vitro and stem cell renewal in mice [55]. Murine models have also demonstrated that TET2 deletion results in progressive myeloproliferation, extramedullary hematopoiesis, and expansion of undifferentiated myeloid precursors occurring in a pattern highly reminiscent of human CMML [55]. Moreover, competitive reconstitution assays in lethally irradiated mice showed that the cells with induced deletion of TET2 had a proliferative advantage over wildtype cells [55]. In vitro and animal models, therefore, suggest that TET2 mutations result in a loss of control of cell renewal at many different points in hematopoietic differentiation [55]. This, along with the fact that TET2 mutations are seen in a wide spectrum of myeloid disorders in humans, suggests that loss of TET2 catalytic function may induce leukemogenesis by increasing the self-renewal capacity of cells and potentiating acquisition of further mutations [51, 52, 54, 55]. Cases of AML with TET2 mutations also appear to have their own gene expression signature, featuring deregulation of genes associated with stem cell self-renewal, cell cycle control, and cytokine and growth factor cell signaling [47]. Gaidzik et al. found that the gene expression signature identified in
The relationship between TET2 mutations and prognosis is unclear and different studies have shown conflicting results. It is likely that TET2 mutations do not affect MPN prognosis but may be a marker of better prognosis in MDS patients [53, 56]. Prognostic implications in AML are uncertain. Some studies, such as the relatively small study by Nibourel et al., have found no association between prognosis and TET2 mutation status [57]. Gaidzik et al. also detected no prognostic implications of TET2 in a large cohort of 783 subjects [49]. Conversely, other studies, for example, those by Abdel-Wahab et al. and Metzeler et al. both, concluded that TET2 was linked with poorer prognosis in AML [29, 46, 47, 57, 58]. Metzeler et al. found that as well as lower response rates and higher rates of relapse,
6.2. IDH1 and 2
The wildtype isocitrate dehydrogenases are a group of NADP+ dependent enzymes which catalyze the conversion of isocitrate to
There are a number of mechanisms by which IDH mutations may contribute to leukemic transformation. TET2 catalytic activity is dependent on
The impact of IDH mutations on prognosis is uncertain, with some recent studies reporting an improved outcome [33, 64, 65], and others reporting an inferior outcome to IDH wildtype AML [65–67]. Other studies suggest that there is no impact on response to therapy or survival [64, 68]. A meta-analysis conducted by Feng et al., including 15 studies and data from a total of 8121 AML patients, concluded that IDH mutations are likely to have an adverse prognostic impact overall [69]. When the disease is stratified according to genotype, cytogenetics, and type of mutation, however, the implications of IDH mutations are unclear. Paschka et al. found in their study of 805 AML patients that IDH mutations predicted reduced relapse-free and overall survival in favorable risk
Finally, the fact that virtually all IDH mutations are detected at diagnosis, rather than arising later in the disease process, suggests that these mutations occur very early in leukemogenesis and are candidates as disease initiators [54, 71]. Increased acquisition of IDH mutations in advanced MPN and MDS and in secondary AML indicates that they may be involved in leukemic transformation [46, 54, 71]. Thus, IDH mutations appear to play a role in triggering leukemogenesis and may offer a useful biomarker of disease in the form of 2-hydroxyglutarate. Further research is required to reliably ascertain the impact of IDH mutations on prognosis.
7. Histone Modifications in AML
Histone tail modifications play a key role in epigenetic modulation of gene expression and may include methylation, acetylation, phosphorylation, ADP-ribosylation, and ubiquitination (see Figure 4) [27, 72]. Mechanisms of aberrant histone modification in AML include mutations in genes concerned with polycomb group complexes (PcG), widely considered to be the “bridge” between histone modification and DNA methylation [72, 73]. PcGs maintain stable and heritable transcriptional repression in specific target genes [72]. PcGs are related to body patterning, stem cell renewal, and they also may have pathogenic roles to play in oncogenesis [72, 73]. Genes coding for components of the PcG may be amplified or overexpressed, or the PcG may be “ectopically recruited” to nontarget genes in cancer development [72]. Mutations have been detected in a number of PcG components in myeloid disorders, with some, unexpectedly, conferring a loss of function [27, 73–76].
7.1. EZH2
Enhancer of zeste homologue 2 (EZH2) mutations has been detected in approximately 7% of MDS, 3–13% MPN, and occasionally in AML [8, 75–77]. EZH2 is the catalytic component of PcG Repressor Complex 2 (PRC2), a highly conserved H3K27 methyltransferase [6, 8, 76]. Two further subunits, EED and SUZ12, comprise the PRC2 unit [6, 8]. Methylation of H3K27 leads to the recruitment of PRC1, followed by DNMT binding via EZH2 and consequent DNA methylation [75]. EZH2 can also interact with HDACs through EED and in this manner influences histone deacetylation and may exert further influence over the genome through interaction with noncoding RNA [75]. This results in promotion of chromatin condensation and suppression of genes concerned with cell fate decisions, thereby influencing stem cell renewal capacity [6].
Overexpression of EZH2 has been detected in various epithelial malignancies, and, more recently, activating mutations of EZH2 have been found in diffuse large B cell lymphoma [77]. It is likely that gain-of-function EZH2 mutations result in reduced expression of regulatory genes, such as BRCA-1 and p16, and increased activity of cellular pathways concerned with proliferation and invasion [75]. Overexpression of EZH2 bestows unlimited replicative potential on hematopoietic stem cells in vitro and prevents stem cell exhaustion following repeated serial transplants in irradiated mice [74]. Unexpectedly, missense, nonsense, and frameshift mutations have been found in MDS, MPN, and AML [6, 76, 77]. These mutations frequently result in a truncated SET domain, thought to be crucial to the catalytic activity of the protein [76]. These findings suggest that the loss-of-function mutations in EZH2 may contribute to myeloid neoplasm [6, 76, 77]. The oncogenic implications of both loss and gain of function of EZH2 implies dual, tissue-specific roles as both oncogene and tumor suppressor [6, 8, 77]. Mutations in EED and SUZ12 rarely occur in patients with MDS/MPN overlap disorders or PMF but may occur in conjunction with EZH2 [76].
EZH2 mutations have been detected in patients with refractory anemia, a relatively early stage of MDS, and have been found to remain constant as the disease progresses towards secondary AML [76]. It is likely, therefore, that this is an early event in myeloid disease and not an initiator of leukemic transformation. EZH2 is located on chromosome 7q, and loss of this chromosome in MDS has long been recognized as a poor prognostic indicator [76, 77]. Further research has found that it is likely that this poor prognosis in these patients is associated with loss of EZH2 [75, 78, 79]. The prognostic implications of EZH2 mutations in AML have been more elusive, largely due to the low incidence of these mutations in de novo disease. Wang et al. identified EZH2 mutations in 1.7% of 714 subjects with de novo AML, amounting to 13 patients, and were unable to identify any association with OS, EFS, or chance of CR [79]. The relevance of this observation to AML in general, however, is limited considering the small number of subjects bearing EZH2 mutations. The apparent role of the various EZH2 mutations in oncogenesis is an insight into the complex function of PRC2 as an epigenetic regulator.
7.2. ASXL-1
Somatic nonsense, missense, frameshift, and point mutations of the additional sex combs-like gene (ASXL-1) are found in 10–25% MDS, 10–15% MPN, and 5–30% AML [6, 71, 80, 81]. These mutations are more frequently found in secondary than de novo AML and occur in about 45% of CMML [82]. The majority of mutations cause frameshift and mostly occur in the PHD domain, which is thought to be responsible for methylated lysine binding [73, 83]. It is unclear whether ASXL-1 mutations confer a loss or gain of function—however, evidence from Abdel-Wahab et al. suggests that a large proportion of these mutations results in reduced ASXL-1 expression [73]. It is thought that ASXL-1 exerts a modulatory effect on the epigenome through both activating and suppressive interactions with PcGs (particularly PRC2) and trithorax genes [73, 80]. Consequently, loss of ASXL-1 expression in myeloid neoplasm appears to result in reduced H3K27me3 concentrations at specific target loci, perhaps through inhibition of PRC2 recruitment, and consequent overexpression of leukemia-promoting genes [73]. Wildtype ASXL-1 may also interact with BAP-1 to form a deubiquitinase specific to H2AK119 which results in repression of gene transcription [80]. Mutations in ASXL-1 may also, therefore, affect epigenetic regulation through interruption of ubiquitin removal from specific histone lysine residues, although the relationship with leukemogenesis is unclear [84]. Furthermore, alteration of the epigenome through uncontrolled expression of posterior HOX genes is thought to be an additional consequence of ASXL-1 mutations [73, 84]. ASXL-1 appears to have a role in both repressing and promoting HOX gene expression in mice and flies [85]. Findings from murine knockout models have been controversial, with some researchers reporting only mild myeloerythroid lineage defects and others finding an MDS/MPN-like phenotype, particularly if there is concurrent RAS mutation [73, 85].
ASXL-1 mutations are frequently detected at diagnosis of MDS and MPN and remain constant throughout disease progression [46]. Despite one study which found increased mutation incidence in myelofibrosis secondary to other MPNs, evidence suggests that ASXL-1 mutations are early events which may precede JAK2 and TET2 mutations [46, 73]. ASXL-1 mutations—particularly frameshift—are associated with more aggressive disease, faster time to leukemic transformation and shorter overall survival in MPN and MDS [71, 81]. The prognostic implications of ASXL-1 mutations in AML are less clear. Some studies have found that, like TET2, ASXL-1 mutations confer a particularly poor prognosis in ELN favorable AML [97]. However, one large study by Shen et al. reported no association with outcome overall but reduced survival in the intermediate risk group [98]. Similarly, Pratcorona et al. found that there was a significant association with poorer survival and ASXL-1 mutations which was particularly evident in the intermediate risk group but was also found overall [82]. Chou et al. found in a cytogenetically heterogeneous cohort that although ASXL-1 mutations were not significant predictors of prognosis in a multivariate analysis, they were associated with lower CR and OS [99]. Conversely, Schnittger et al. investigated intermediate risk patients and found that although there was a strong correlation between occurrence of ASXL-
8. Conclusion
Recent DNA sequencing studies have facilitated the identification of a hitherto unrecognized class of genetic mutations in AML—mutations in epigenetic modifying genes (see Table 1). The occurrence of mutations in epigenetic modifiers in AML highlights the inadequacy of the “two-hit model” as a mechanistic explanation of leukemogenesis. Mutations in genes concerned with regulation of the epigenome potentially offer a valuable insight into the process of leukemogenesis. These mutations also contribute to the existing body of knowledge that aids risk stratification of AML through molecular and cytogenetic analysis of leukemic cells. Mutations in genes such as TET2, DNMT3A, and ASXL-1 may be associated with a poor prognosis and as such may represent a novel subset of high risk AML which requires more aggressive treatment. The prognostic implications of IDH 1 and 2, and EZH2 mutations are unclear. There is considerable debate about the prognostic implications of various genetic mutations in AML, in part due to the fact that direct comparison between studies is difficult, if not impossible. Patient cohorts frequently vary according to age, type and intensity of therapy, and inclusion of different AML subtypes (e.g., all AML compared with CN-AML). Studies may also vary in their methodology, such as in differences in the subgroup analysis performed or the proportion of patients selected for analysis, which if low (e.g., Marcucci et al. and Ribeiro et al. only analysed 18% and 13% of their cohort resp.) [35, 44] has the potential to introduce an element of selection bias.
Table 1
Key genetic mutations thought to have implications for prognosis in AML. The genetic mutations included in the table are reviewed below. Table compiled with information from [29, 32, 35, 39, 50, 52, 58, 61, 66, 67, 73, 76, 80, 86–96].
Gene | Mutation type | Mutation frequency | Consequence of mutation | Prognostic implications | Initiating lesion |
DNMT3A | Mainly missense |
15–25% AML | R882 mutations reduce binding affinity and catalytic activity—LOF | Likely poorer prognosis. Affected by R882/non-R882, CM, patient age Adverse prognosis in intermediate risk AML | Uncertain |
|
|||||
TET2 | 46% frame shift |
7–23% AML |
Truncated protein and consequent reduction in hydroxymethylation—LOF |
Poorer prognosis in favorable risk CN-AML |
Early event, possibly initiating |
|
|||||
IDH1 + 2 | Amino acid substitutions |
15–30% AML |
Neomorphic gain of function |
Unclear—R140Q may have favorable effect on prognosis R132H/R172K may have no effect |
Early event, possibly initiating |
|
|||||
ASXL1 | Nonsense, missense, frame shift, and point mutations | 10–15% MPN/AML |
Uncertain if function lost or gained—research suggests reduced ASXL1 expression | Poor prognostic marker in AML and MPN | Very early, increased leukemic progression in MPN |
|
|||||
EZH2 | Missense, nonsense, and frame shift | Occasional in AML |
Truncated SET domain—LOF |
Worse OS in MDS, CMML, and PMF |
Very early event in MPN, probably not leukemic initiator |
Identifying the prognostic implications of a single mutation holds many challenges for researchers. There are many factors which may alter prognosis in AML, and these factors may influence study results to different degrees. Grimwade et al. found that, as well as cytogenetic groups, the response to first course of chemotherapy was a significant prognostic indicator [1, 10]. There are a number of other indicators of prognosis, such as age, race, and performance status. White cell count, platelet count, LDH level, and bilirubin may also predict outcome [1, 4, 10]. It is likely that there is interplay between different prognostic factors; for example, Leith et al. found that elderly AML sufferers had increased expression of a multidrug resistance protein (MDR1) and high functional drug efflux, as well as a higher rate of unfavorable cytogenetics [100]. Thus, there are many variables which may alter outcome in AML other than genetic and cytogenetic mutations.
Nonetheless, clearer definition of unfavorable molecular profiles may help determine treatment; Patel et al. identified a subgroup of AML patients with particular mutations who benefited from an increased dose of daunorubicin [33]. While previously only favorable risk patients have been shown to benefit from intensified dose chemotherapy, individuals with unfavorable DNMT3A and MLL-PTD mutations (as well as the favorable NPM1) had improved responses [33]. These findings from Patel et al. suggest that incorporating data from more extensive mutational analyses can improve prognostic stratification [33]. Improved classification of AML based on molecular genetics as well as cytogenetics may also, therefore, yield improved outcomes.
Despite a rapidly growing base of knowledge concerning genetic mutations in AML, relatively few therapeutic options have arisen. This may change with a greater understanding of mutations in genes concerned with epigenetic modifications. The identification of novel mutations in AML may highlight putative drug targets; the neomorphic gain-of-function effect observed in IDH1 and 2 mutations is a potential target for enzyme inhibition, for example. Equally, the reversible nature of epigenetic modifications has led to hopes that treatments such as DNMT and histone deacetylase inhibitors may represent a valuable addition to the therapeutic arsenal in AML [6, 7]. These drugs have been used with some success in MDS and AML, particularly in elderly populations unable to undergo intensive chemotherapy regimens [101–105]. Further research into the role of epigenetic aberrations in leukemogenesis may inform the development of targeted histone deacetylase inhibitors and personalized treatment regimens. Furthermore, study of mutations occurring in epigenetic modifying genes has identified potential biomarkers, such as 2-HG in
Overall, therefore, the recent identification of mutations in genes with epigenetic function has added to the understanding of leukemia pathogenesis and identified potential therapeutic targets. Identification of mutations in other classes of genes, such as those concerned with cell adhesion and the spliceosome, in addition to elucidation of the role of micro-RNAs in AML, is likely to further inform prognostic and therapeutic decision making and understanding of the leukemogenic process. Indeed, it is clear from recent advances that whole genome or targeted exome sequencing has the potential to improve treatment strategies and thereby survival rates in AML, and in the future it may play an important role in the clinical workup of every patient with AML to facilitate more effective personalized therapy.
[1] F. Ferrara, C. A. Schiffer, "Acute myeloid Leukemia in adults," The Lancet, vol. 381 no. 9865, pp. 484-495, DOI: 10.1016/S0140-6736(12)61727-9, 2013.
[2] M. R. O'Donnell, C. N. Abboud, J. Altman, "Acute myeloid Leukemia," Journal of the National Comprehensive Cancer Network, vol. 10 no. 8, pp. 984-1021, 2012.
[3] Y. Koh, I. Kim, J.-Y. Bae, E. Y. Song, H.-K. Kim, S.-S. Yoon, D. S. Lee, S. S. Park, M. H. Park, S. Park, B. K. Kim, "Prognosis of secondary acute myeloid Leukemia is affected by the type of the preceding hematologic disorders and the presence of trisomy 8," Japanese Journal of Clinical Oncology, vol. 40 no. 11, pp. 1037-1045, DOI: 10.1093/jjco/hyq097, 2010.
[4] E. H. Estey, "Acute myeloid Leukemia: 2013 update on risk-stratification and management," American Journal of Hematology, vol. 88 no. 4, pp. 318-327, 2013.
[5] T. L. Lin, B. D. Smith, "Prognostically important molecular markers in cytogenetically normal acute myeloid Leukemia," American Journal of the Medical Sciences, vol. 341 no. 5, pp. 404-408, DOI: 10.1097/MAJ.0b013e318201109d, 2011.
[6] O. Abdel-Wahab, A. T. Fathi, "Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy," Advances in Hematology, vol. 2012,DOI: 10.1155/2012/469592, 2012.
[7] Y. Oki, J. P. Issa, "Epigenetic mechanisms in AML—a target for therapy," Cancer Treatment and Research, vol. 145, pp. 19-40, DOI: 10.1007/978-0-387-69259-3_2, 2010.
[8] A. H. Shih, O. Abdel-Wahab, J. P. Patel, R. L. Levine, "The role of mutations in epigenetic regulators in myeloid malignancies," Nature Reviews Cancer, vol. 12 no. 9, pp. 599-612, DOI: 10.1038/nrc3343, 2012.
[9] D. Grimwade, H. Walker, G. Harrison, F. Oliver, S. Chatters, C. J. Harrison, K. Wheatley, A. K. Burnett, A. H. Goldstone, "The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid Leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial," Blood, vol. 98 no. 5, pp. 1312-1320, DOI: 10.1182/blood.V98.5.1312, 2001.
[10] D. Grimwade, H. Walker, F. Oliver, K. Wheatley, C. Harrison, G. Harrison, J. Rees, I. Hann, R. Stevens, A. Burnett, A. Goldstone, "The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial," Blood, vol. 92 no. 7, pp. 2322-2333, 1998.
[11] W.-J. Hong, B. C. Medeiros, "Unfavorable-risk cytogenetics in acute myeloid Leukemia," Expert Review of Hematology, vol. 4 no. 2, pp. 173-184, DOI: 10.1586/ehm.11.10, 2011.
[12] H. Döhner, E. H. Estey, S. Amadori, F. R. Appelbaum, T. Büchner, A. K. Burnett, H. Dombret, P. Fenaux, D. Grimwade, R. A. Larson, F. Lo-Coco, T. Naoe, D. Niederwieser, G. J. Ossenkoppele, M. A. Sanz, J. Sierra, M. S. Tallman, B. Löwenberg, C. D. Bloomfield, "Diagnosis and management of acute myeloid Leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet," Blood, vol. 115 no. 3, pp. 453-474, DOI: 10.1182/blood-2009-07-235358, 2010.
[13] J. W. Vardiman, J. Thiele, D. A. Arber, R. D. Brunning, M. J. Borowitz, A. Porwit, N. L. Harris, M. M. Le Beau, E. Hellström-Lindberg, A. Tefferi, C. D. Bloomfield, "The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute Leukemia: rationale and important changes," Blood, vol. 114 no. 5, pp. 937-951, DOI: 10.1182/blood-2009-03-209262, 2009.
[14] L. M. Kelly, D. G. Gilliland, "Genetics of myeloid Leukemias," Annual Review of Genomics and Human Genetics, vol. 3, pp. 179-198, DOI: 10.1146/annurev.genom.3.032802.115046, 2002.
[15] J. Basecke, L. Cepek, C. Mannhalter, J. Krauter, S. Hildenhagen, G. Brittinger, L. Trumper, F. Griesinger, "Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous Leukemia," Blood, vol. 100 no. 6, pp. 2267-2268, DOI: 10.1182/blood-2002-06-1673, 2002.
[16] J. Song, D. Mercer, X. Hu, H. Liu, M. M. Li, "Common Leukemia- and lymphoma-associated genetic aberrations in healthy individuals," Journal of Molecular Diagnostics, vol. 13 no. 2, pp. 213-219, DOI: 10.1016/j.jmoldx.2010.10.009, 2011.
[17] J. R. Downing, "The core-binding factor Leukemias: lessons learned from murine models," Current Opinion in Genetics and Development, vol. 13 no. 1, pp. 48-54, DOI: 10.1016/S0959-437X(02)00018-7, 2003.
[18] M. Higuchi, D. O'Brien, P. Kumaravelu, N. Lenny, E.-J. Yeoh, J. R. Downing, "Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid Leukemia," Cancer Cell, vol. 1 no. 1, pp. 63-74, DOI: 10.1016/S1535-6108(02)00016-8, 2002.
[19] T. Pabst, M. Eyholzer, S. Haefliger, J. Schardt, B. U. Mueller, "Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid Leukemia," Journal of Clinical Oncology, vol. 26 no. 31, pp. 5088-5093, DOI: 10.1200/JCO.2008.16.5563, 2008.
[20] J. S. Welch, T. J. Ley, D. C. Link, "The origin and evolution of mutations in acute myeloid Leukemia," Cell, vol. 150 no. 2, pp. 264-278, 2012.
[21] A. Murati, M. Brecqueville, R. Devillier, M. J. Mozziconacci, V. Gelsi-Boyer, D. Birnbaum, "Myeloid malignancies: mutations, models and management," BMC Cancer, vol. 12, article 304, 2012.
[22] M. M. Suzuki, A. Bird, "DNA methylation landscapes: provocative insights from epigenomics," Nature Reviews Genetics, vol. 9 no. 6, pp. 465-476, DOI: 10.1038/nrg2341, 2008.
[23] M. H. Saied, J. Marzec, S. Khalid, P. Smith, T. A. Down, V. K. Rakyan, G. Molloy, M. Raghavan, S. Debernardi, B. D. Young, "Genome wide analysis of acute myeloid Leukemia reveal Leukemia specific methylome and subtype specific hypomethylation of repeats," PLoS ONE, vol. 7 no. 3,DOI: 10.1371/journal.pone.0033213, 2012.
[24] M. E. Figueroa, S. Lugthart, Y. Li, C. Erpelinck-Verschueren, X. Deng, P. J. Christos, E. Schifano, J. Booth, W. van Putten, L. Skrabanek, F. Campagne, M. Mazumdar, J. M. Greally, P. J. M. Valk, B. Löwenberg, R. Delwel, A. Melnick, "DNA methylation signatures identify biologically distinct subtypes in acute myeloid Leukemia," Cancer Cell, vol. 17 no. 1, pp. 13-27, DOI: 10.1016/j.ccr.2009.11.020, 2010.
[25] J. T. Reilly, "Pathogenesis of acute myeloid leukaemia and inv(16)(p13;q22): a paradigm for understanding leukaemogenesis?," British Journal of Haematology, vol. 128 no. 1, pp. 18-34, DOI: 10.1111/j.1365-2141.2004.05236.x, 2005.
[26] J. Borgel, S. Guibert, Y. Li, H. Chiba, D. Schübeler, H. Sasaki, T. Forné, M. Weber, "Targets and dynamics of promoter DNA methylation during early mouse development," Nature Genetics, vol. 42 no. 12, pp. 1093-1100, DOI: 10.1038/ng.708, 2010.
[27] E. Bartova, J. Krejci, A. Harnicarova, G. Galiova, S. Kozubek, "Histone modifications and nuclear architecture: a review," Journal of Histochemistry & Cytochemistry, vol. 56 no. 8, pp. 711-721, DOI: 10.1369/jhc.2008.951251, 2008.
[28] S. Takahashi, "Current findings for recurring mutations in acute myeloid Leukemia," Journal of Hematology and Oncology, vol. 4, article 36,DOI: 10.1186/1756-8722-4-36, 2011.
[29] O. Abdel-Wahab, A. Mullally, C. Hedvat, G. Garcia-Manero, J. Patel, M. Wadleigh, S. Malinge, J. Yao, O. Kilpivaara, R. Bhat, K. Huberman, S. Thomas, I. Dolgalev, A. Heguy, E. Paietta, M. M. Le Beau, M. Beran, M. S. Tallman, B. L. Ebert, H. M. Kantarjian, R. M. Stone, D. G. Gilliland, J. D. Crispino, R. L. Levine, "Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies," Blood, vol. 114 no. 1, pp. 144-147, DOI: 10.1182/blood-2009-03-210039, 2009.
[30] A. Akalin, F. E. Garrett-Bakelman, M. Kormaksson, "Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid Leukemia," PLOS Genetics, vol. 8 no. 6, 2012.
[31] L. Bullinger, M. Ehrich, K. Döhner, R. F. Schlenk, H. Döhner, M. R. Nelson, D. Van Den Boom, "Quantitative DNA methylation predicts survival in adult acute myeloid Leukemia," Blood, vol. 115 no. 3, pp. 636-642, DOI: 10.1182/blood-2009-03-211003, 2010.
[32] T. J. Ley, L. Ding, M. J. Walter, "DNMT3A mutations in acute myeloid Leukemia," The New England Journal of Medicine, vol. 363 no. 25, pp. 2424-2433, DOI: 10.1056/NEJMoa1005143, 2010.
[33] J. P. Patel, M. Gonen, M. E. Figueroa, "Prognostic relevance of integrated genetic profiling in acute myeloid Leukemia," The New England Journal of Medicine, vol. 366 no. 12, pp. 1079-1089, 2012.
[34] I. Fried, C. Bodner, M. M. Pichler, K. Lind, C. Beham-Schmid, F. Quehenberger, W. R. Sperr, W. Linkesch, H. Sill, A. Wölfler, "Frequency, onset and clinical impact of somatic DNMT3A mutations in therapy-related and secondary acute myeloid Leukemia," Haematologica, vol. 97 no. 2, pp. 246-250, DOI: 10.3324/haematol.2011.051581, 2012.
[35] A. F. Ribeiro, M. Pratcorona, C. Erpelinck-Verschueren, "Mutant DNMT3A: a marker of poor prognosis in acute myeloid Leukemia," Blood, vol. 119 no. 24, pp. 5824-5831, 2012.
[36] F. Thol, F. Damm, A. Lüdeking, C. Winschel, K. Wagner, M. Morgan, H. Yun, G. Göhring, B. Schlegelberger, D. Hoelzer, M. Lübbert, L. Kanz, W. Fiedler, H. Kirchner, G. Heil, J. Krauter, A. Ganser, M. Heuser, "Incidence and prognostic influence of DNMT3A mutations in acute myeloid Leukemia," Journal of Clinical Oncology, vol. 29 no. 21, pp. 2889-2896, DOI: 10.1200/JCO.2011.35.4894, 2011.
[37] X.-J. Yan, J. Xu, Z.-H. Gu, C.-M. Pan, G. Lu, Y. Shen, J.-Y. Shi, Y.-M. Zhu, L. Tang, X.-W. Zhang, W.-X. Liang, J.-Q. Mi, H.-D. Song, K.-Q. Li, Z. Chen, S.-J. Chen, "Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic Leukemia," Nature Genetics, vol. 43 no. 4, pp. 309-317, DOI: 10.1038/ng.788, 2011.
[38] G. A. Challen, D. Sun, M. Jeong, M. Luo, J. Jelinek, J. S. Berg, C. Bock, A. Vasanthakumar, H. Gu, Y. Xi, S. Liang, Y. Lu, G. J. Darlington, A. Meissner, J.-P. J. Issa, L. A. Godley, W. Li, M. A. Goodell, "Dnmt3a is essential for hematopoietic stem cell differentiation," Nature Genetics, vol. 44 no. 1, pp. 23-31, DOI: 10.1038/ng.1009, 2012.
[39] X.-J. Yan, J. Xu, Z.-H. Gu, C.-M. Pan, G. Lu, Y. Shen, J.-Y. Shi, Y.-M. Zhu, L. Tang, X.-W. Zhang, W.-X. Liang, J.-Q. Mi, H.-D. Song, K.-Q. Li, Z. Chen, S.-J. Chen, "Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic Leukemia," Nature Genetics, vol. 43 no. 4, pp. 309-315, DOI: 10.1038/ng.788, 2011.
[40] E. A. Eklund, "The role of hox proteins in leukemogenesis: insights into key regulatory events in hematopoiesis," Critical Reviews in Oncogenesis, vol. 16 no. 1-2, pp. 65-76, 2011.
[41] H. Wu, V. Coskun, J. Tao, W. Xie, W. Ge, K. Yoshikawa, E. Li, Y. Zhang, Y. E. Sun, "Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes," Science, vol. 329 no. 5990, pp. 444-447, DOI: 10.1126/science.1190485, 2010.
[42] J. Krönke, L. Bullinger, V. Teleanu, "Clonal evolution in relapsed NPM1-mutated acute myeloid Leukemia," Blood, vol. 122 no. 1, pp. 100-108, 2013.
[43] S. Wakita, H. Yamaguchi, I. Omori, "Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid Leukemia," Leukemia, vol. 27 no. 5, pp. 1044-1052, DOI: 10.1038/leu.2012.317 , 2012.
[44] G. Marcucci, K. H. Metzeler, S. Schwind, H. Becker, K. Maharry, K. Mroźek, M. D. Radmacher, J. Kohlschmidt, D. Nicolet, S. P. Whitman, Y.-Z. Wu, B. L. Powell, T. H. Carter, J. E. Kolitz, M. Wetzler, A. J. Carroll, M. R. Baer, J. O. Moore, M. A. Caligiuri, R. A. Larson, C. D. Bloomfield, "Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid Leukemia," Journal of Clinical Oncology, vol. 30 no. 7, pp. 742-750, DOI: 10.1200/JCO.2011.39.2092, 2012.
[45] V. I. Gaidzik, R. F. Schlenk, P. Paschka, "Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid Leukemia: results of the AML Study Group (AMLSG)," Blood, vol. 121 no. 23, pp. 4769-4777, DOI: 10.1182/blood-2012-10-461624, 2013.
[46] O. Abdel-Wahab, T. Manshouri, J. Patel, K. Harris, J. Yao, C. Hedvat, A. Heguy, C. Bueso-Ramos, H. Kantarjian, R. L. Levine, S. Verstovsek, "Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to Leukemias," Cancer Research, vol. 70 no. 2, pp. 447-452, DOI: 10.1158/0008-5472.CAN-09-3783, 2010.
[47] K. H. Metzeler, K. Maharry, M. D. Radmacher, K. Mrózek, D. Margeson, H. Becker, J. Curfman, K. B. Holland, S. Schwind, S. P. Whitman, Y.-Z. Wu, W. Blum, B. L. Powell, T. H. Carter, M. Wetzler, J. O. Moore, J. E. Kolitz, M. R. Baer, A. J. Carroll, R. A. Larson, M. A. Caligiuri, G. Marcucci, C. D. Bloomfield, "TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid Leukemia: a cancer and Leukemia group B study," Journal of Clinical Oncology, vol. 29 no. 10, pp. 1373-1381, DOI: 10.1200/JCO.2010.32.7742, 2011.
[48] S. Weissmann, T. Alpermann, V. Grossmann, A. Kowarsch, N. Nadarajah, C. Eder, F. Dicker, A. Fasan, C. Haferlach, T. Haferlach, W. Kern, S. Schnittger, A. Kohlmann, "Landscape of TET2 mutations in acute myeloid Leukemia," Leukemia, vol. 26, pp. 934-942, DOI: 10.1038/leu.2011.326, 2011.
[49] V. I. Gaidzik, P. Paschka, D. Spath, "TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group," Journal of Clinical Oncology, vol. 30 no. 12, pp. 1350-1357, DOI: 10.1200/JCO.2011.39.2886, 2012.
[50] F. Delhommeau, S. Dupont, V. Della Valle, C. James, S. Trannoy, A. Massé, O. Kosmider, J.-P. Le Couedic, F. Robert, A. Alberdi, Y. Lécluse, I. Plo, F. J. Dreyfus, C. Marzac, N. Casadevall, C. Lacombe, S. P. Romana, P. Dessen, J. Soulier, F. Viguié, M. Fontenay, W. Vainchenker, O. A. Bernard, "Mutation in TET2 in myeloid cancers," The New England Journal of Medicine, vol. 360 no. 22, pp. 2289-2301, DOI: 10.1056/NEJMoa0810069, 2009.
[51] M. Ko, Y. Huang, A. M. Jankowska, U. J. Pape, M. Tahiliani, H. S. Bandukwala, J. An, E. D. Lamperti, K. P. Koh, R. Ganetzky, X. S. Liu, L. Aravind, S. Agarwal, J. P. MacIejewski, A. Rao, "Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2," Nature, vol. 468 no. 7325, pp. 839-843, DOI: 10.1038/nature09586, 2010.
[52] M. E. Figueroa, O. Abdel-Wahab, C. Lu, P. S. Ward, J. Patel, A. Shih, Y. Li, N. Bhagwat, A. Vasanthakumar, H. F. Fernandez, M. S. Tallman, Z. Sun, K. Wolniak, J. K. Peeters, W. Liu, S. E. Choe, V. R. Fantin, E. Paietta, B. Löwenberg, J. D. Licht, L. A. Godley, R. Delwel, P. J. M. Valk, C. B. Thompson, R. L. Levine, A. Melnick, "Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation," Cancer Cell, vol. 18 no. 6, pp. 553-567, DOI: 10.1016/j.ccr.2010.11.015, 2010.
[53] S. M. C. Langemeijer, R. P. Kuiper, M. Berends, R. Knops, M. G. Aslanyan, M. Massop, E. Stevens-Linders, P. Van Hoogen, A. G. Van Kessel, R. A. P. Raymakers, E. J. Kamping, G. E. Verhoef, E. Verburgh, A. Hagemeijer, P. Vandenberghe, T. De Witte, B. A. Van Der Reijden, J. H. Jansen, "Acquired mutations in TET2 are common in myelodysplastic syndromes," Nature Genetics, vol. 41 no. 7, pp. 838-842, DOI: 10.1038/ng.391, 2009.
[54] A. Tefferi, "Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1," Leukemia, vol. 24 no. 6, pp. 1128-1138, 2010.
[55] K. Moran-Crusio, L. Reavie, A. Shih, O. Abdel-Wahab, D. Ndiaye-Lobry, C. Lobry, M. E. Figueroa, A. Vasanthakumar, J. Patel, X. Zhao, F. Perna, S. Pandey, J. Madzo, C. Song, Q. Dai, C. He, S. Ibrahim, M. Beran, J. Zavadil, S. D. Nimer, A. Melnick, L. A. Godley, I. Aifantis, R. L. Levine, "Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation," Cancer Cell, vol. 20 no. 1, pp. 11-24, DOI: 10.1016/j.ccr.2011.06.001, 2011.
[56] A. Tefferi, A. Pardanani, K.-H. Lim, O. Abdel-Wahab, T. L. Lasho, J. Patel, N. Gangat, C. M. Finke, S. Schwager, A. Mullally, C.-Y. Li, C. A. Hanson, R. Mesa, O. Bernard, F. Delhommeau, W. Vainchenker, D. G. Gilliland, R. L. Levine, "TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis," Leukemia, vol. 23 no. 5, pp. 905-911, DOI: 10.1038/leu.2009.47, 2009.
[57] O. Nibourel, O. Kosmider, M. Cheok, N. Boissel, A. Renneville, N. Philippe, H. Dombret, F. Dreyfus, B. Quesnel, S. Geffroy, S. Quentin, C. Roche-Lestienne, J.-M. Cayuela, C. Roumier, P. Fenaux, W. Vainchenker, O. A. Bernard, J. Soulier, M. Fontenay, C. Preudhomme, "Incidence and prognostic value of TET2 alterations in de novo acute myeloid Leukemia achieving complete remission," Blood, vol. 116 no. 7, pp. 1132-1135, DOI: 10.1182/blood-2009-07-234484, 2010.
[58] W.-C. Chou, S.-C. Chou, C.-Y. Liu, C.-Y. Chen, H.-A. Hou, Y.-Y. Kuo, M.-C. Lee, B.-S. Ko, J.-L. Tang, M. Yao, W. Tsay, S.-J. Wu, S.-Y. Huang, S.-C. Hsu, Y.-C. Chen, Y.-C. Chang, Y.-Y. Kuo, K.-T. Kuo, F.-Y. Lee, M.-C. Liu, C.-W. Liu, M.-H. Tseng, C.-F. Huang, H.-F. Tien, "TET2 mutation is an unfavorable prognostic factor in acute myeloid Leukemia patients with intermediate-risk cytogenetics," Blood, vol. 118 no. 14, pp. 3803-3810, DOI: 10.1182/blood-2011-02-339747, 2011.
[59] D. Rakheja, S. Konoplev, L. J. Medeiros, W. Chen, "IDH mutations in acute myeloid Leukemia," Human Pathology, vol. 43 no. 10, pp. 1541-1551, DOI: 10.1016/j.humpath.2012.05.003, 2012.
[60] P. Paschka, R. F. Schlenk, V. I. Gaidzik, M. Habdank, J. Krönke, L. Bullinger, D. Späth, S. Kayser, M. Zucknick, K. Götze, H.-A. Horst, U. Germing, H. Döhner, K. Döhner, "IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid Leukemia and confer adverse prognosis in cytogenetically normal acute myeloid Leukemia with NPM1 mutation without FLT3 internal tandem duplication," Journal of Clinical Oncology, vol. 28 no. 22, pp. 3636-3643, DOI: 10.1200/JCO.2010.28.3762, 2010.
[61] M. E. Figueroa, O. Abdel-Wahab, C. Lu, P. S. Ward, J. Patel, A. Shih, Y. Li, N. Bhagwat, A. Vasanthakumar, H. F. Fernandez, M. S. Tallman, Z. Sun, K. Wolniak, J. K. Peeters, W. Liu, S. E. Choe, V. R. Fantin, E. Paietta, B. Löwenberg, J. D. Licht, L. A. Godley, R. Delwel, P. J. M. Valk, C. B. Thompson, R. L. Levine, A. Melnick, "Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation," Cancer Cell, vol. 18 no. 6, pp. 553-567, DOI: 10.1016/j.ccr.2010.11.015, 2010.
[62] S. Schnittger, C. Haferlach, M. Ulke, T. Alpermann, W. Kern, T. Haferlach, "IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status," Blood, vol. 116 no. 25, pp. 5486-5496, DOI: 10.1182/blood-2010-02-267955, 2010.
[63] L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger, E. M. Driggers, V. R. Fantin, H. G. Jang, S. Jin, M. C. Keenan, K. M. Marks, R. M. Prins, P. S. Ward, K. E. Yen, L. M. Liau, J. D. Rabinowitz, L. C. Cantley, C. B. Thompson, M. G. Vander Heiden, S. M. Su, "Cancer-associated IDH1 mutations produce 2-hydroxyglutarate," Nature, vol. 462 no. 7274, pp. 739-744, DOI: 10.1038/nature08617, 2009.
[64] K. Wagner, F. Damm, G. Göhring, K. Görlich, M. Heuser, I. Schäfer, O. Ottmann, M. Lübbert, W. Heit, L. Kanz, G. Schlimok, A. A. Raghavachar, W. Fiedler, H. H. Kirchner, W. Brugger, M. Zucknick, B. Schlegelberger, G. Heil, A. Ganser, J. Krauter, "Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid Leukemia: SNP rs11554137 is an adverse prognostic factor," Journal of Clinical Oncology, vol. 28 no. 14, pp. 2356-2364, DOI: 10.1200/JCO.2009.27.6899, 2010.
[65] W.-C. Chou, W.-C. Lei, B.-S. Ko, H.-A. Hou, C.-Y. Chen, J.-L. Tang, M. Yao, W. Tsay, S.-J. Wu, S.-Y. Huang, S.-C. Hsu, Y.-C. Chen, Y.-C. Chang, K.-T. Kuo, F.-Y. Lee, M.-C. Liu, C.-W. Liu, M.-H. Tseng, C.-F. Huang, H.-F. Tien, "The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid Leukemia," Leukemia, vol. 25 no. 2, pp. 246-253, DOI: 10.1038/leu.2010.267, 2011.
[66] G. Marcucci, K. Maharry, Y.-Z. Wu, M. D. Radmacher, K. Mrózek, D. Margeson, K. B. Holland, S. P. Whitman, H. Becker, S. Schwind, K. H. Metzeler, B. L. Powell, T. H. Carter, J. E. Kolitz, M. Wetzler, A. J. Carroll, M. R. Baer, M. A. Caligiuri, R. A. Larson, C. D. Bloomfield, "IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid Leukemia: a cancer and Leukemia group B study," Journal of Clinical Oncology, vol. 28 no. 14, pp. 2348-2355, DOI: 10.1200/JCO.2009.27.3730, 2010.
[67] S. Schnittger, C. Haferlach, M. Ulke, T. Alpermann, W. Kern, T. Haferlach, "IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status," Blood, vol. 116 no. 25, pp. 5486-5496, DOI: 10.1182/blood-2010-02-267955, 2010.
[68] F. Thol, F. Damm, K. Wagner, G. Göhring, B. Schlegelberger, D. Hoelzer, M. Lübbert, W. Heit, L. Kanz, G. Schlimok, A. Raghavachar, W. Fiedler, H. Kirchner, G. Heil, M. Heuser, J. Krauter, A. Ganser, "Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid Leukemia," Blood, vol. 116 no. 4, pp. 614-616, DOI: 10.1182/blood-2010-03-272146, 2010.
[69] J. H. Feng, X. P. Guo, Y. Y. Chen, Z. J. Wang, Y. P. Cheng, Y. M. Tang, "Prognostic significance of IDH1 mutations in acute myeloid Leukemia: a meta-analysis," American Journal of Blood Research, vol. 2 no. 4, pp. 254-264, 2012.
[70] C. L. Green, C. M. Evans, L. Zhao, R. K. Hills, A. K. Burnett, D. C. Linch, R. E. Gale, "The prognostic significance of IDH2 mutations in AML depends on the location of the mutation," Blood, vol. 118 no. 2, pp. 409-412, DOI: 10.1182/blood-2010-12-322479, 2011.
[71] M. Brecqueville, J. Rey, F. Bertucci, E. Coppin, P. Finetti, N. Carbuccia, N. Cervera, V. Gelsi-Boyer, C. Arnoulet, O. Gisserot, D. Verrot, B. Slama, N. Vey, M.-J. Mozziconacci, D. Birnbaum, A. Murati, "Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms," Genes Chromosomes and Cancer, vol. 51 no. 8, pp. 743-755, DOI: 10.1002/gcc.21960, 2012.
[72] H. Boukarabila, A. J. Saurin, E. Batsché, N. Mossadegh, M. Van Lohuizen, A. P. Otte, J. Pradel, C. Muchardt, M. Sieweke, E. Duprez, "The PRC1 polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation," Genes and Development, vol. 23 no. 10, pp. 1195-1206, DOI: 10.1101/gad.512009, 2009.
[73] O. Abdel-Wahab, M. Adli, L. M. LaFave, "ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression," Cancer Cell, vol. 22 no. 2, pp. 180-193, DOI: 10.1016/j.ccr.2012.06.032, 2012.
[74] L. M. Kamminga, L. V. Bystrykh, A. de Boer, S. Houwer, J. Douma, E. Weersing, B. Dontje, G. De Haan, "The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion," Blood, vol. 107 no. 5, pp. 2170-2179, DOI: 10.1182/blood-2005-09-3585, 2006.
[75] F. Xu, X. Li, "The role of histone methyltransferase EZH2 in myelodysplastic syndromes," Expert Review of Hematology, vol. 5 no. 2, pp. 177-185, DOI: 10.1586/ehm.12.5, 2012.
[76] T. Ernst, A. J. Chase, J. Score, C. E. Hidalgo-Curtis, C. Bryant, A. V. Jones, K. Waghorn, K. Zoi, F. M. Ross, A. Reiter, A. Hochhaus, H. G. Drexler, A. Duncombe, F. Cervantes, D. Oscier, J. Boultwood, F. H. Grand, N. C. P. Cross, "Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders," Nature Genetics, vol. 42 no. 8, pp. 722-726, DOI: 10.1038/ng.621, 2010.
[77] G. Nikoloski, S. M. C. Langemeijer, R. P. Kuiper, R. Knops, M. Massop, E. R. L. T. M. Tönnissen, A. Van Der Heijden, T. N. Scheele, P. Vandenberghe, T. De Witte, B. A. Van Der Reijden, J. H. Jansen, "Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes," Nature Genetics, vol. 42 no. 8, pp. 665-667, DOI: 10.1038/ng.620, 2010.
[78] O. Abdel-Wahab, A. T. Fathi, "Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy," Advances in Hematology, vol. 2012,DOI: 10.1155/2012/469592, 2012.
[79] X. Wang, H. Dai, Q. Wang, "EZH2 mutations are related to low blast percentage in bone marrow and -7/del(7q) in de novo acute myeloid Leukemia," PLoS ONE, vol. 8 no. 4, 2013.
[80] V. Gelsi-Boyer, M. Brecqueville, R. Devillier, A. Murati, M.-J. Mozziconacci, D. Birnbaum, "Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases," Journal of Hematology & Oncology, vol. 5,DOI: 10.1186/1756-8722-5-12, 2012.
[81] F. Thol, I. Friesen, F. Damm, H. Yun, E. M. Weissinger, J. Krauter, K. Wagner, A. Chaturvedi, A. Sharma, M. Wichmann, G. Göhring, C. Schumann, G. Bug, O. Ottmann, W.-K. Hofmann, B. Schlegelberger, M. Heuser, A. Ganser, "Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes," Journal of Clinical Oncology, vol. 29 no. 18, pp. 2499-2506, DOI: 10.1200/JCO.2010.33.4938, 2011.
[82] M. Pratcorona, S. Abbas, M. A. Sanders, J. E. Koenders, F. G. Kavelaars, C. A. J. Erpelinck-Verschueren, A. Zeilemakers, B. Löwenberg, P. J. M. Valk, "Acquired mutations in ASXL1 in acute myeloid Leukemia: prevalence and prognostic value," Haematologica, vol. 97 no. 3, pp. 388-392, DOI: 10.3324/haematol.2011.051532, 2012.
[83] S. Schnittger, C. Eder, S. Jeromin, "ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome," Leukemia, vol. 27 no. 1, pp. 82-91, DOI: 10.1038/leu.2012.262, 2013.
[84] C. L. Fisher, I. Lee, S. Bloyer, S. Bozza, J. Chevalier, A. Dahl, C. Bodner, C. D. Helgason, J. L. Hess, R. K. Humphries, H. W. Brock, "Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice," Developmental Biology, vol. 337 no. 1,DOI: 10.1016/j.ydbio.2009.10.004, 2010.
[85] C. L. Fisher, N. Pineault, C. Brookes, C. D. Helgason, H. Ohta, C. Bodner, J. L. Hess, R. K. Humphries, H. W. Brock, "Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or Leukemia," Blood, vol. 115 no. 1, pp. 38-46, DOI: 10.1182/blood-2009-07-230698, 2010.
[86] B. Falini, M. P. Martelli, N. Bolli, P. Sportoletti, A. Liso, E. Tiacci, T. Haferlach, "Acute myeloid Leukemia with mutated nucleophosmin (NPM1): is it a distinct entity?," Blood, vol. 117 no. 4, pp. 1109-1120, DOI: 10.1182/blood-2010-08-299990, 2011.
[87] H. Liu, E. H.-Y. Cheng, J. J.-D. Hsieh, "MLL fusions: pathways to Leukemia," Cancer Biology and Therapy, vol. 8 no. 13, pp. 1204-1211, 2009.
[88] G. Nikoloski, S. M. C. Langemeijer, R. P. Kuiper, R. Knops, M. Massop, E. R. L. T. M. Tönnissen, A. Van Der Heijden, T. N. Scheele, P. Vandenberghe, T. De Witte, B. A. Van Der Reijden, J. H. Jansen, "Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes," Nature Genetics, vol. 42 no. 8, pp. 665-667, DOI: 10.1038/ng.620, 2010.
[89] R. Rau, P. Brown, "Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity," Hematological Oncology, vol. 27 no. 4, pp. 171-181, DOI: 10.1002/hon.904, 2009.
[90] Y. Zhang, A. Chen, X. M. Yan, G. Huang, "Disordered epigenetic regulation in MLL-related Leukemia," International Journal of Hematology, vol. 96 no. 4, pp. 428-437, DOI: 10.1007/s12185-012-1180-0, 2012.
[91] A. Dufour, F. Schneider, K. H. Metzeler, E. Hoster, S. Schneider, E. Zellmeier, T. Benthaus, M.-C. Sauerland, W. E. Berdel, T. Büchner, B. Wörmann, J. Braess, W. Hiddemann, S. K. Bohlander, K. Spiekermann, "Acute myeloid Leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome," Journal of Clinical Oncology, vol. 28 no. 4, pp. 570-577, DOI: 10.1200/JCO.2008.21.6010, 2010.
[92] P. D. Kottaridis, R. E. Gale, M. E. Frew, G. Harrison, S. E. Langabeer, A. A. Belton, H. Walker, K. Wheatley, D. T. Bowen, A. K. Burnett, A. H. Goldstone, D. C. Linch, "The presence of a FLT3 internal tandem duplication in patients with acute myeloid Leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials," Blood, vol. 98 no. 6, pp. 1752-1759, DOI: 10.1182/blood.V98.6.1752, 2001.
[93] S. Schnittger, C. Schoch, W. Kern, C. Mecucci, C. Tschulik, M. F. Martelli, T. Haferlach, W. Hiddemann, B. Falini, "Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous Leukemia with a normal karyotype," Blood, vol. 106 no. 12, pp. 3733-3739, DOI: 10.1182/blood-2005-06-2248, 2005.
[94] S. Schnittger, C. Schoch, M. Dugas, W. Kern, P. Staib, C. Wuchter, H. Löffler, C. M. Sauerland, H. Serve, T. Büchner, T. Haferlach, W. Hiddemann, "Analysis of FLT3 length mutations in 1003 patients with acute myeloid Leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease," Blood, vol. 100 no. 1, pp. 59-66, DOI: 10.1182/blood.V100.1.59, 2002.
[95] C. Thiede, S. Koch, E. Creutzig, C. Steudel, T. Illmer, M. Schaich, G. Ehninger, "Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid Leukemia (AML)," Blood, vol. 107 no. 10, pp. 4011-4020, DOI: 10.1182/blood-2005-08-3167, 2006.
[96] D. Small, "FLT3 mutations: biology and treatment," Hematology, pp. 178-184, 2006.
[97] K. H. Metzeler, H. Becker, K. Maharry, M. D. Radmacher, J. Kohlschmidt, K. Mrózek, D. Nicolet, S. P. Whitman, Y.-Z. Wu, S. Schwind, B. L. Powell, T. H. Carter, M. Wetzler, J. O. Moore, J. E. Kolitz, M. R. Baer, A. J. Carroll, R. A. Larson, M. A. Caligiuri, G. Marcucci, C. D. Bloomfield, "ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category," Blood, vol. 118 no. 26, pp. 6920-6929, DOI: 10.1182/blood-2011-08-368225, 2011.
[98] Y. Shen, Y.-M. Zhu, X. Fan, J.-Y. Shi, Q.-R. Wang, X.-J. Yan, Z.-H. Gu, Y.-Y. Wang, B. Chen, C.-L. Jiang, H. Yan, F.-F. Chen, H.-M. Chen, Z. Chen, J. Jin, S.-J. Chen, "Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid Leukemia," Blood, vol. 118 no. 20, pp. 5593-5603, DOI: 10.1182/blood-2011-03-343988, 2011.
[99] W.-C. Chou, H.-H. Huang, H.-A. Hou, C.-Y. Chen, J.-L. Tang, M. Yao, W. Tsay, B.-S. Ko, S.-J. Wu, S.-Y. Huang, S.-C. Hsu, Y.-C. Chen, Y.-N. Huang, Y.-C. Chang, F.-Y. Lee, M.-C. Liu, C.-W. Liu, M.-H. Tseng, C.-F. Huang, H.-F. Tien, "Distinct clinical and biological features of de novo acute myeloid Leukemia with additional sex comb-like 1 (ASXL1) mutations," Blood, vol. 116 no. 20, pp. 4086-4094, DOI: 10.1182/blood-2010-05-283291, 2010.
[100] C. P. Leith, K. J. Kopecky, J. Godwin, T. McConnell, M. L. Slovak, I.-M. Chen, D. R. Head, F. R. Appelbaum, C. L. Willman, "Acute myeloid Leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group Study," Blood, vol. 89 no. 9, pp. 3323-3329, 1997.
[101] D. Small, "Targeting FLT3 for the treatment of Leukemia," Seminars in Hematology, vol. 45, pp. S17-S21, DOI: 10.1053/j.seminhematol.2008.07.007, 2008.
[102] M. Bornhäuser, T. Illmer, M. Schaich, S. Soucek, G. Ehninger, C. Thiede, "Improved outcome after stem-cell transplantation in FLT3/ITD-positive AML," Blood, vol. 109 no. 5, pp. 2264-2265, DOI: 10.1182/blood-2006-09-047225, 2007.
[103] R. E. Gale, R. Hills, P. D. Kottaridis, S. Srirangan, K. Wheatley, A. K. Burnett, D. C. Linch, "No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid Leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic Leukemia, from the UK MRCAML10 and 12 trials," Blood, vol. 106 no. 10, pp. 3658-3665, DOI: 10.1182/blood-2005-03-1323, 2005.
[104] G. Marcucci, K. Maharry, M. D. Radmacher, K. Mrózek, T. Vukosavljevic, P. Paschka, S. P. Whitman, C. Langer, C. D. Baldus, C.-G. Liu, A. S. Ruppert, B. L. Powell, A. J. Carroll, M. A. Caligiuri, J. E. Kolitz, R. A. Larson, C. D. Bloomfield, "Prognostic significance of, and gene and MicroRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid Leukemia with high-risk molecular features: a cancer and Leukemia group B study," Journal of Clinical Oncology, vol. 26 no. 31, pp. 5078-5087, DOI: 10.1200/JCO.2008.17.5554, 2008.
[105] U. Bacher, C. Haferlach, W. Kern, T. Haferlach, S. Schnittger, "Prognostic relevance of FLT3-TKD mutations in AML: the combination matters an analysis of 3082 patients," Blood, vol. 111 no. 5, pp. 2527-2537, DOI: 10.1182/blood-2007-05-091215, 2008.
[106] U. Bacher, T. Haferlach, C. Schoch, W. Kern, S. Schnittger, "Implications of NRAS mutations in AML: a study of 2502 patients," Blood, vol. 107 no. 10, pp. 3847-3853, DOI: 10.1182/blood-2005-08-3522, 2006.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2014 Emma Conway O’Brien et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease. Certain cytogenetic and molecular genetic mutations are recognized to have an impact on prognosis, leading to their inclusion in some prognostic stratification systems. Recently, the advent of high-throughput whole genome or exome sequencing has led to the identification of several novel recurrent mutations in AML, a number of which have been found to involve genes concerned with epigenetic regulation. These genes include in particular DNMT3A, TET2, and IDH1/2, involved with regulation of DNA methylation, and EZH2 and ASXL-1, which are implicated in regulation of histones. However, the precise mechanisms linking these genes to AML pathogenesis have yet to be fully elucidated as has their respective prognostic relevance. As massively parallel DNA sequencing becomes increasingly accessible for patients, there is a need for clarification of the clinical implications of these mutations. This review examines the literature surrounding the biology of these epigenetic modifying genes with regard to leukemogenesis and their clinical and prognostic relevance in AML when mutated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer