Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Graphene is a material gaining attention as a candidate for new application fields such as chemical sensing. In this review, we discuss recent advancements in the field of hydrogen gas sensors based on graphene. Accordingly, the main part of the paper focuses on hydrogen gas sensors and examines the influence of different manufacturing scenarios on the applicability of graphene and its derivatives as key components of sensing layers. An overview of pristine graphene customization methods is presented such as heteroatom doping, insertion of metal/metal oxide nanosized domains, as well as creation of graphene-polymer blends. Volumetric structuring of graphene sheets (single layered and stacked forms) is also considered as an important modifier of its effective use. Finally, a discussion of the possible advantages and weaknesses of graphene as sensing material for hydrogen detection is provided.

Details

Title
Graphene-Based Hydrogen Gas Sensors: A Review
Author
Ilnicka, Anna  VIAFID ORCID Logo  ; Lukaszewicz, Jerzy P
First page
633
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2407698341
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.