Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of gold nanorods (AuNRs) as surface-enhanced Raman scattering (SERS) substrates has gained much attraction due to their remarkably aspect-ratio-dependent plasmonic properties. In this report, we described the development of AuNRs with a high aspect ratio and longitudinal surface plasmon resonance (LSPR) >850 nm through a hydroquinone-based fabrication with minor modifications. The synthesis started with the reduction of chloroauric acid (HAuCl4) by sodium borohydride (NaBH4) to make gold nanoseeds from which AuNRs were grown with the aid of silver nitrate (AgNO3), HAuCl4, cetyltrimethylammonium bromide (CTAB), and hydroquinone (HQ). Scanning electron microscopy coupled with energy-dispersive X-ray (SEM-EDX), Transmission electron microscope (TEM), X-ray diffraction (XRD) and Ultra-violet-Visible spectroscopy (UV-Vis) were performed to study the shape, size, and structural and optical properties of AuNRs, respectively. The results showed that AuNRs with high aspect ratios (AR > 3) were single crystals with a heterogenous size distribution, and that the growth of Au nanoseeds into AuNRs took place along the [001] direction. AuNRs exhibited two plasmon resonance peaks at 520 nm and 903 nm, while gold nanoseeds had only a plasmon resonance peak at 521 nm. The as-synthesized AuNRs also showed SERS effects for thiophanate methyl, a broad-spectrum fungicide, with the limit of detection down to 5 mg/L of the fungicide. AuNR-coated glass can serve as a SERS-based sensing platform for rapid detection of thiophanate methyl with high sensitivity and reproducibility.

Details

Title
Hydroquinone-Based Fabrication of Gold Nanorods with a High Aspect Ratio and LSPR Greater than 850 nm to Be Used as a Surface Plasmon Resonance Platform for Rapid Detection of Thiophanate Methyl
Author
Hang Nguyen Thi Nhat; Ngoc Thuy Trang Le  VIAFID ORCID Logo  ; Nguyen Thi Phuong Phong; Nguyen, Dai Hai  VIAFID ORCID Logo  ; Nguyen-Le, Minh-Tri  VIAFID ORCID Logo 
First page
3654
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2407792211
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.