Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most electrical machines and drive signals are non-Gaussian and are highly nonlinear in nature. A useful set of techniques to examine such signals relies on higher-order statistics (HOS) spectral representations. They describe statistical dependencies of frequency components that are neglected by traditional spectral measures, namely the power spectrum (PS). One of the most used HOS is the bispectrum where examining higher-order correlations should provide further details and information about the conditions of electric machines and drives. In this context, the stator currents of electric machines are of particular interest because they are periodic, nonlinear, and cyclostationary. This current is, therefore, well adapted for analysis using bispectrum in the designing of an efficient condition monitoring method for electric machines and drives. This paper is, therefore, proposing a bispectrum-based diagnosis method dealing the with tidal stream turbine (TST) rotor blades biofouling issue, which is a marine environment natural process responsible for turbine rotor unbalance. The proposed bispectrum-based diagnosis method is verified using experimental data provided from a permanent magnet synchronous generator (PMSG)-based TST experiencing biofouling emulated by attachment on the turbine blade. Based on the achieved results, it can be concluded that the proposed diagnosis method has been very successful. Indeed, biofouling imbalance-related frequencies are clearly identified despite marine environmental nuisances (turbulences and waves).

Details

Title
Higher-Order Spectra Analysis-Based Diagnosis Method of Blades Biofouling in a PMSG Driven Tidal Stream Turbine
Author
Saidi, Lotfi  VIAFID ORCID Logo  ; Benbouzid, Mohamed  VIAFID ORCID Logo  ; Diallo, Demba  VIAFID ORCID Logo  ; Amirat, Yassine  VIAFID ORCID Logo  ; Elbouchikhi, Elhoussin  VIAFID ORCID Logo  ; Wang, Tianzhen  VIAFID ORCID Logo 
First page
2888
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2410903555
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.