Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Extreme weather events have increased due to climate change. Bioretention basins can effectively alleviate urban flooding by short-term water retention. Reclaimed water (RW) is considered an alternative water resource during water shortages. In this study, the abilities for waterlogging tolerance of four herbaceous flowers (angelonia, narrow-leaf zinnia, celosia, and medallion flower) are investigated to screen suitable ornamental plants for bioretention basins, and the influence of RW on the plants is also evaluated. All plants were treated with 10 days of waterlogging (electrical conductivity (EC) of tap water = 110.0 μS·cm−1) followed by a seven-day recovery. Angelonia (Angelonia salicariifolia Humb. & Bonpl) was not affected by waterlogging and showed the best performance, judged from the ornamental quality, photosynthesis rate, and leaf malondialdehyde (MDA) among the tested flowers. Photosynthesis of the narrow-leaf zinnia (Zinnia angustifolia Kunth) decreased during waterlogging but soon recovered after being drained. Celosia (Celosia argentea L.) and medallion flower (Melampodium paludosum Kunth) were significantly affected by waterlogging and did not recover after drainage, in terms of responses to both external and physiological reactions. Moreover, waterlogging by the simulated RW (EC = 542.4 μS·cm−1) did not have negative impacts on angelonia and narrow-leaf zinnia, due to the reduced leaf malondialdehyde concentration of angelonia and retarded the decline in the net photosynthesis rate of narrow-leaf zinnia. Thus, RW could be used as an alternative irrigation water resource for bioretention basins during the dry season to maintain plant growth.

Details

Title
Effects of Waterlogging with Different Water Resources on Plant Growth and Tolerance Capacity of Four Herbaceous Flowers in a Bioretention Basin
Author
Wen-Chi, Yang; Kuan-Hung, Lin  VIAFID ORCID Logo  ; Chun-Wei, Wu; Yu-Jie, Chang; Yu-Sen, Chang
First page
1619
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2411447941
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.