It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Porous, nano-architected metals with dimensions down to ~10 nm are predicted to have extraordinarily high strength and stiffness per weight, but have been challenging to fabricate and test experimentally. Here, we use colloidal synthesis to make ~140 nm length and ~15 nm wall thickness hollow Au-Ag nanoboxes with smooth and rough surfaces. In situ scanning electron microscope and transmission electron microscope testing of the smooth and rough nanoboxes show them to yield at 130 ± 45 MPa and 96 ± 31 MPa respectively, with significant strain hardening. A higher strain hardening rate is seen in rough nanoboxes than smooth nanoboxes. Finite element modeling is used to show that the structure of the nanoboxes is not responsible for the hardening behavior suggesting that material mechanisms are the source of observed hardening. Molecular dynamics simulations indicate that hardening is a result of interactions between dislocations and the associated increase in dislocation density.
Fabricating and mechanically testing nanoarchitected materials remains a challenge. Here, the authors use colloidal synthesis to fabricate Au-Ag hollow nanoboxes and investigate the effect of either a rough or a smooth nanobox surface on the mechanical properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Stanford University, Department of Mechanical Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956)
2 Institute of High Performance Computing, A*STAR, Singapore, Singapore (GRID:grid.418742.c) (ISNI:0000 0004 0470 8006)
3 Stanford University, Department of Materials Science and Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956)
4 Sandia National Laboratories, Materials, Physical, and Chemical Sciences, Albuquerque, USA (GRID:grid.474520.0) (ISNI:0000000121519272)