It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
High temperature studies of spin Hall effect have often been neglected despite its profound significance in real-world devices. In this work, high temperature spin torque ferromagnetic resonance measurement was performed to evaluate the effects of temperature on the Gilbert damping and spin Hall efficiency of PtxCu1−x. When the temperature was varied from 300 K to 407 K, the Gilbert damping was relatively stable with a change of 4% at composition x = 66%. Alloying Pt and Cu improved the spin Hall efficiency of Pt75Cu25/Co/Ta by 29% to a value of 0.31 ± 0.03 at 407 K. However, the critical switching current density is dependent on the ratio between the Gilbert damping and spin Hall efficiency and the smallest value was observed when x = 47%. It was found that at this concentration, the spin transparency was at its highest at 0.85 ± 0.09 hence indicating the importance of interfacial transparency for energy efficient devices at elevated temperature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nanyang Technological University, School of Physical & Mathematical Sciences, Singapore, Singapore (GRID:grid.59025.3b) (ISNI:0000 0001 2224 0361); GLOBALFOUNDRIES Singapore Pte, Ltd., Singapore, Singapore (GRID:grid.472848.5)
2 Nanyang Technological University, School of Physical & Mathematical Sciences, Singapore, Singapore (GRID:grid.59025.3b) (ISNI:0000 0001 2224 0361)
3 GLOBALFOUNDRIES Singapore Pte, Ltd., Singapore, Singapore (GRID:grid.472848.5)