Full Text

Turn on search term navigation

© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It has long been known that verification of a forecast against the sequence of analyses used to produce those forecasts can under-estimate the magnitude of forecast errors. Here we show that under certain conditions the verification of a short-range forecast against a perturbed analysis coming from an ensemble data assimilation scheme can give the same root-mean-square error as verification against the truth. This means that a perturbed analysis can be used as a reliable proxy for the truth. However, the conditions required for this result to hold are rather restrictive: the analysis must be optimal, the ensemble spread must be equal to the error in the mean, the ensemble size must be large and the forecast being verified must be the background forecast used in the data assimilation. Although these criteria are unlikely to be met exactly it becomes clear that for most cases verification against a perturbed analysis gives better results than verification against an unperturbed analysis.

We demonstrate the application of these results in a idealised model framework and a numerical weather prediction context. In deriving this result we recall that an optimal (Kalman) analysis is one for which the analysis increments are uncorrelated with the analysis errors.

Details

Title
Verification against perturbed analyses and observations
Author
Bowler, N E 1 ; Cullen, M J P 1 ; Piccolo, C 1 

 Met Office, Fitzroy Road, Exeter, EX1 3PB, UK 
Pages
403-411
Publication year
2015
Publication date
2015
Publisher
Copernicus GmbH
ISSN
1023-5809
e-ISSN
1607-7946
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414019477
Copyright
© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.