Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TCCON). We show that the assimilation of the GOSATXCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 providesXCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7 ppm compared to the free run (1.1 and 1.4 ppm, respectively) and an improved estimated precision of 1 ppm compared to the GOSAT BESD data (3.3 ppm). We also show that the analysis has skill for synoptic situations in the vicinity of frontal systems, where the GOSAT retrievals are sparse due to cloud contamination. We finally computed the 10-day forecast from each analysis at 00:00 UTC, and we demonstrate that the CO2 forecast shows synoptic skill for the largest-scale weather patterns (of the order of 1000 km) even up to day 5 compared to its own analysis.

Details

Title
Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales
Author
Massart, Sébastien 1   VIAFID ORCID Logo  ; Agustí-Panareda, Anna 1 ; Heymann, Jens 2 ; Buchwitz, Michael 2   VIAFID ORCID Logo  ; Chevallier, Frédéric 3   VIAFID ORCID Logo  ; Reuter, Maximilian 2   VIAFID ORCID Logo  ; Hilker, Michael 2 ; Burrows, John P 2   VIAFID ORCID Logo  ; Deutscher, Nicholas M 4 ; Feist, Dietrich G 5   VIAFID ORCID Logo  ; Hase, Frank 6 ; Sussmann, Ralf 7 ; Desmet, Filip 8 ; Dubey, Manvendra K 9   VIAFID ORCID Logo  ; Griffith, David W T 10   VIAFID ORCID Logo  ; Kivi, Rigel 11   VIAFID ORCID Logo  ; Petri, Christof 2   VIAFID ORCID Logo  ; Schneider, Matthias 6 ; Velazco, Voltaire A 10   VIAFID ORCID Logo 

 European Centre for Medium-Range Weather Forecasts, Reading, UK 
 Institute of Environmental Physics, University of Bremen, Bremen, Germany 
 Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Gif sur Yvette, France 
 Institute of Environmental Physics, University of Bremen, Bremen, Germany; Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, Australia 
 Max Planck Institute for Biogeochemistry, Jena, Germany 
 Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, Germany 
 Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany 
 Department of Chemistry, University of Antwerp, Antwerp, Belgium 
 Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, USA 
10  Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, Australia 
11  Finnish Meteorological Institute, Arctic Research, Sodankylä, Finland 
Pages
1653-1671
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414053128
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.