Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability ofTs determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 C yr-1. Most models show smaller increase inTs with increasing depth. Air temperature (Ta) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences inTs trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 C yr-1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 C yr-1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R=-0.85, P=0.003), but not with the initial total near-surface permafrost area (R=-0.30,P=0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of -2.80 ± 0.67 million km2 C-1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr-1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.

Details

Title
Simulated high-latitude soil thermal dynamics during the past 4 decades
Author
Peng, S 1   VIAFID ORCID Logo  ; Ciais, P 2 ; Krinner, G 3   VIAFID ORCID Logo  ; Wang, T 1 ; Gouttevin, I 4   VIAFID ORCID Logo  ; McGuire, A D 5 ; Lawrence, D 6 ; Burke, E 7   VIAFID ORCID Logo  ; Chen, X 8   VIAFID ORCID Logo  ; Decharme, B 9   VIAFID ORCID Logo  ; Koven, C 10   VIAFID ORCID Logo  ; MacDougall, A 11 ; Rinke, A 12 ; Saito, K 13 ; Zhang, W 14   VIAFID ORCID Logo  ; Alkama, R 9 ; Bohn, T J 15 ; Delire, C 9 ; Hajima, T 13 ; D Ji 16   VIAFID ORCID Logo  ; Lettenmaier, D P 8 ; Miller, P A 14 ; Moore, J C 16 ; Smith, B 14 ; Sueyoshi, T 17 

 UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), 38041 Grenoble, France; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France 
 Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France 
 UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), 38041 Grenoble, France 
 UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), 38041 Grenoble, France; Irstea, UR HHLY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne CEDEX, France 
 US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, AK, USA 
 National Center for Atmospheric Research, Boulder, CO, USA 
 Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK 
 Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA 
 CNRM-GAME, Unitémixte de recherche CNRS/Meteo-France (UMR 3589), 42 avCoriolis, 31057 Toulouse CEDEX, France 
10  Lawrence Berkeley National Laboratory, Berkeley, CA, USA 
11  School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada 
12  College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany 
13  Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan 
14  Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden 
15  School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA 
16  College of Global Change and Earth System Science, Beijing Normal University, Beijing, China 
17  National Institute of Polar Research, Tachikawa, Tokyo, Japan; Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan 
Pages
179-192
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414103696
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.