Full text

Turn on search term navigation

© 2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW–SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks (<100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.

Details

Title
Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone
Author
Wadas, Sonja H 1   VIAFID ORCID Logo  ; Tanner, David C 1   VIAFID ORCID Logo  ; Polom, Ulrich 1 ; Krawczyk, Charlotte M 2   VIAFID ORCID Logo 

 Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany 
 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Technical University Berlin, Ernst-Reuter-Platz 1, 10587, Germany 
Pages
2335-2350
Publication year
2017
Publication date
2017
Publisher
Copernicus GmbH
ISSN
15618633
e-ISSN
16849981
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414112188
Copyright
© 2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.