Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper deals with the tribological study of the laser remelted surfaces of the ECAP-processed AZ61 magnesium alloy and AZ61–Al2O3 metal matrix composite with 10 wt.% addition of Al2O3 nanoparticles. The study included the experimental optimization of the laser surface remelting conditions for the investigated materials by employing a 400 W continual wave fiber laser source. Tribological tests were performed in a conventional “ball-on-disc” configuration with a ceramic ZrO2 ball under a 5 N normal load and a sliding speed of 100 mm/s. The results showed that both the incorporation of Al2O3 nanoparticles and the applied laser treatments led to recognizable improvements in the tribological properties of the studied AZ61–Al2O3 composites in comparison with the reference AZ61 alloy. Thus, the best improvement has been obtained for the laser modified AZ61–10 wt.% Al2O3 nanocomposite showing about a 48% decrease in the specific wear rate compared to the laser untreated AZ61 base material.

Details

Title
The Influence of Laser Surface Remelting on the Tribological Behavior of the ECAP-Processed AZ61 Mg Alloy and AZ61–Al2O3 Metal Matrix Composite
Author
Ballóková, Beáta; Falat, Ladislav; Puchý, Viktor  VIAFID ORCID Logo  ; Molčanová, Zuzana; Besterci, Michal; Džunda, Róbert; Aqeel Abbas; Song-Jeng, Huang  VIAFID ORCID Logo 
First page
2688
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414127398
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.