Full text

Turn on search term navigation

© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1–6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to-20 µgm-3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies.

Details

Title
A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals
Author
Binietoglou, I 1   VIAFID ORCID Logo  ; Basart, S 2   VIAFID ORCID Logo  ; L Alados-Arboledas 3   VIAFID ORCID Logo  ; Amiridis, V 4 ; Argyrouli, A 5 ; Baars, H 6   VIAFID ORCID Logo  ; Baldasano, J M 2   VIAFID ORCID Logo  ; Balis, D 7   VIAFID ORCID Logo  ; Belegante, L 1 ; Bravo-Aranda, J A 3 ; Burlizzi, P 8 ; Carrasco, V 9 ; Chaikovsky, A 10 ; Comerón, A 11   VIAFID ORCID Logo  ; D'Amico, G 12 ; Filioglou, M 7 ; Granados-Muñoz, M J 3   VIAFID ORCID Logo  ; Guerrero-Rascado, J L 3   VIAFID ORCID Logo  ; Ilic, L 13 ; Kokkalis, P 14 ; Maurizi, A 15 ; Mona, L 12 ; Monti, F 15 ; Muñoz-Porcar, C 11 ; Nicolae, D 1 ; Papayannis, A 5 ; Pappalardo, G 12 ; Pejanovic, G 16 ; Pereira, S N 9 ; Perrone, M R 8 ; Pietruczuk, A 17   VIAFID ORCID Logo  ; Posyniak, M 17 ; Rocadenbosch, F 18 ; Rodríguez-Gómez, A 11 ; Sicard, M 18   VIAFID ORCID Logo  ; Siomos, N 7 ; Szkop, A 17 ; Terradellas, E 19 ; Tsekeri, A 4 ; Vukovic, A 20 ; Wandinger, U 6 ; Wagner, J 6 

 National Institute of R&D for Optoelectronics, 409 Atomistilor Str., 77125, Magurele, Ilfov, Romania 
 Earth Sciences Department, Barcelona Supercomputing Center, Centro Nacional de Supercomputación (BSC-CNS), Barcelona, Spain 
 Department of Applied Physics, Universidad de Granada, Granada, Spain; Andalusian Institute for Earth System Research (IISTA – CEAMA), University of Granada, Granada, Spain 
 National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (NOA-IAASARS), Athens, Greece 
 National Technical University of Athens, Physics Department, Laser Remote Sensing Laboratory, Zografou, Greece 
 Leibniz Institute for Tropospheric Research, Leipzig, Germany 
 Aristotle University of Thessaloniki, Faculty of Sciences, School of Physics, Thessaloniki, Greece 
 Dipartemento di Fisica, Universitá di Lecce, Lecce, Italy 
 Èvora Geophysics Centre, Èvora, Portugal 
10  Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 
11  Department of Signal Theory and Communications, Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain 
12  Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy 
13  Institute of Physics, Belgrade, Serbia 
14  National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (NOA-IAASARS), Athens, Greece; National Technical University of Athens, Physics Department, Laser Remote Sensing Laboratory, Zografou, Greece 
15  Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Atmosfera e del Clima (CNR-ISAC), Bologna, Italy 
16  South East European Virtual Climate Change Center (SEEVCCC), Republic Hydrometeorological Service of Serbia, Belgrade, Serbia 
17  Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland 
18  Department of Signal Theory and Communications, Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain; Institute of Space Studies of Catalonia (IEEC- CRAE), Barcelona, Spain 
19  AEMET, Barcelona, Spain 
20  South East European Virtual Climate Change Center (SEEVCCC), Republic Hydrometeorological Service of Serbia, Belgrade, Serbia; Faculty of Agriculture, University of Belgrade, Belgrade, Serbia 
Pages
3577-3600
Publication year
2015
Publication date
2015
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414155541
Copyright
© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.