Full text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Measurements of HONO were carried out at an urban background site near central London as part of the Clean air for London (ClearfLo) project in summer 2012. Data were collected from 22 July to 18 August 2014, with peak values of up to 1.8 ppbV at night and non-zero values of between 0.2 and 0.6 ppbV seen during the day. A wide range of other gas phase, aerosol, radiation, and meteorological measurements were made concurrently at the same site, allowing a detailed analysis of the chemistry to be carried out. The peak HONO / NOx ratio of 0.04 is seen at 02:00 UTC, with the presence of a second, daytime, peak in HONO / NOx of similar magnitude to the night-time peak, suggesting a significant secondary daytime HONO source. A photostationary state calculation of HONO involving formation from the reaction of OH and NO and loss from photolysis, reaction with OH, and dry deposition shows a significant underestimation during the day, with calculated values being close to 0, compared to the measurement average of 0.4 ppbV at midday. The addition of further HONO sources from the literature, including dark conversion of NO2 on surfaces, direct emission, photolysis of ortho-substituted nitrophenols, the postulated formation from the reaction of HO2× H2O with NO2, photolysis of adsorbed HNO3 on ground and aerosols, and HONO produced by photosensitized conversion of NO2 on the surface increases the daytime modelled HONO to 0.1 ppbV, still leaving a significant missing daytime source. The missing HONO is plotted against a series of parameters including NO2 and OH reactivity (used as a proxy for organic material), with little correlation seen. Much better correlation is observed with the product of these species with j(NO2), in particular NO2 and the product of NO2 with OH reactivity. This suggests the missing HONO source is in some way related to NO2 and also requires sunlight. Increasing the photosensitized surface conversion rate of NO2 by a factor of 10 to a mean daytime first-order loss of 6 ×10-5 s-1 (but which varies as a function of j(NO2)) closes the daytime HONO budget at all times (apart from the late afternoon), suggesting that urban surfaces may enhance this photosensitized source. The effect of the missing HONO to OH radical production is also investigated and it is shown that the model needs to be constrained to measured HONO in order to accurately reproduce the OH radical measurements.

Details

Title
Detailed budget analysis of HONO in central London reveals a missing daytime source
Author
Lee, J D 1 ; Whalley, L K 2 ; Heard, D E 2   VIAFID ORCID Logo  ; Stone, D 3   VIAFID ORCID Logo  ; Dunmore, R E 4   VIAFID ORCID Logo  ; Hamilton, J F 4 ; Young, D E 5   VIAFID ORCID Logo  ; Allan, J D 6   VIAFID ORCID Logo  ; Laufs, S 7 ; Kleffmann, J 7 

 National Centre for Atmospheric Science, University of York, York, UK; Department of Chemistry, University of York, York, UK 
 National Centre for Atmospheric Science, University of Leeds, Leeds, UK; School of Chemistry, University of Leeds, Leeds, UK 
 School of Chemistry, University of Leeds, Leeds, UK 
 Department of Chemistry, University of York, York, UK 
 School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK; now at: Department of Environmental Toxicology, University of California, Davis, CA 95616, USA 
 School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK; National Centre for Atmospheric Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK 
 Physikalische und Theoretische Chemie/Fakultät Mathematik und Naturwissenschaften, Bergische Universität Wuppertal (BUW), Gaußstr. 20, 42119 Wuppertal, Germany 
Pages
2747-2764
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414175655
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.