Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding, quantifying and attributing the impacts of extreme weather and climate events in the terrestrial biosphere is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit biases in their output that hinder any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies, most of which have been criticized for physical inconsistency and the nonpreservation of the multivariate correlation structure. In this study, we introduce a novel, resampling-based bias correction scheme that fully preserves the physical consistency and multivariate correlation structure of the model output. This procedure strongly improves the representation of climatic extremes and variability in a large regional climate model ensemble (HadRM3P,climateprediction.net/weatherathome), which is illustrated for summer extremes in temperature and rainfall over Central Europe. Moreover, we simulate biosphere–atmosphere fluxes of carbon and water using a terrestrial ecosystem model (LPJmL) driven by the bias-corrected climate forcing. The resampling-based bias correction yields strongly improved statistical distributions of carbon and water fluxes, including the extremes. Our results thus highlight the importance of carefully considering statistical moments beyond the mean for climate impact simulations. In conclusion, the present study introduces an approach to alleviate climate model biases in a physically consistent way and demonstrates that this yields strongly improved simulations of climate extremes and associated impacts in the terrestrial biosphere. A wider uptake of our methodology by the climate and impact modelling community therefore seems desirable for accurately quantifying changes in past, current and future extremes.

Details

Title
A novel bias correction methodology for climate impact simulations
Author
Sippel, S 1 ; Otto, F E L 2 ; Forkel, M 3   VIAFID ORCID Logo  ; Allen, M R 2 ; Guillod, B P 2   VIAFID ORCID Logo  ; Heimann, M 3   VIAFID ORCID Logo  ; Reichstein, M 3 ; Seneviratne, S I 4 ; Thonicke, K 5   VIAFID ORCID Logo  ; Mahecha, M D 6   VIAFID ORCID Logo 

 Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany; Institute for Atmospheric and Climate Science, ETH Zürich, Rämistr. 101, 8075 Zürich, Switzerland 
 Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1 3QY, UK 
 Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany 
 Institute for Atmospheric and Climate Science, ETH Zürich, Rämistr. 101, 8075 Zürich, Switzerland 
 Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany 
 Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany 
Pages
71-88
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
21904979
e-ISSN
21904987
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414203884
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.