Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.

Details

Title
Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting
Author
Li, Ming 1 ; Wang, Q J 2 ; Bennett, James C 2   VIAFID ORCID Logo  ; Robertson, David E 2   VIAFID ORCID Logo 

 CSIRO Data61, Floreat, WA, Australia 
 CSIRO Land and Water, Clayton, VIC, Australia 
Pages
3561-3579
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414252998
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.