Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Coastal flooding related to marine extreme events has severe socioeconomic impacts, and even though the latter are projected to increase under the changing climate, there is a clear deficit of information and predictive capacity related to coastal flood mapping. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining (i) the contribution of waves to the total water level; (ii) improved inundation modeling; and (iii) an open, physics-based framework which can be constantly upgraded, whenever new and more accurate data become available. Four inundation approaches of gradually increasing complexity and computational costs were evaluated in terms of their applicability to large-scale coastal flooding mapping: static inundation (SM); a semi-dynamic method, considering the water volume discharge over the dykes (VD); the flood intensity index approach (Iw); and the model LISFLOOD-FP (LFP). A validation test performed against observed flood extents during the Xynthia storm event showed that SM and VD can lead to an overestimation of flood extents by 232 and 209 %, while Iw and LFP showed satisfactory predictive skill. Application at pan-European scale for the present-day 100-year event confirmed that static approaches can overestimate flood extents by 56 % compared to LFP; however, Iw can deliver results of reasonable accuracy in cases when reduced computational costs are a priority. Moreover, omitting the wave contribution in the extreme total water level (TWL) can result in a 60 % underestimation of the flooded area. The present findings have implications for impact assessment studies, since combination of the estimated inundation maps with population exposure maps revealed differences in the estimated number of people affected within the 20–70 % range.

Details

Title
Developments in large-scale coastal flood hazard mapping
Author
Vousdoukas, Michalis I 1   VIAFID ORCID Logo  ; Voukouvalas, Evangelos 2 ; Mentaschi, Lorenzo 2   VIAFID ORCID Logo  ; Dottori, Francesco 2   VIAFID ORCID Logo  ; Giardino, Alessio 3   VIAFID ORCID Logo  ; Bouziotas, Dimitrios 4 ; Bianchi, Alessandra 2 ; Salamon, Peter 2 ; Feyen, Luc 2 

 European Commission, Joint European Research Centre (JRC), Via Enrico Fermi 2749, 21027, Ispra, Italy; Department of Marine Sciences, University of the Aegean, University Hill, 41100, Mitilene, Lesbos, Greece 
 European Commission, Joint European Research Centre (JRC), Via Enrico Fermi 2749, 21027, Ispra, Italy 
 Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands 
 European Commission, Joint European Research Centre (JRC), Via Enrico Fermi 2749, 21027, Ispra, Italy; Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands 
Pages
1841-1853
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
15618633
e-ISSN
16849981
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414388016
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.