Full text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai–Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-term (1971–2013) changes in frozen ground its the effects on hydrology in the upper Heihe basin, northeastern QTP. The model was validated against data obtained from multiple ground-based observations. Based on model simulations, we analyzed spatio-temporal changes in frozen soils and their effects on hydrology. Our results show that the area with permafrost shrank by 8.8 % (approximately 500 km2), predominantly in areas with elevations between 3500 and 3900 m. The maximum depth of seasonally frozen ground decreased at a rate of approximately 0.032 m decade-1, and the active layer thickness over the permafrost increased by approximately 0.043 m decade-1. Runoff increased significantly during the cold season (November–March) due to an increase in liquid soil moisture caused by rising soil temperatures. Areas in which permafrost changed into seasonally frozen ground at high elevations showed especially large increases in runoff. Annual runoff increased due to increased precipitation, the base flow increased due to changes in frozen soils, and the actual evapotranspiration increased significantly due to increased precipitation and soil warming. The groundwater storage showed an increasing trend, indicating that a reduction in permafrost extent enhanced the groundwater recharge.

Details

Title
Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau
Author
Gao, Bing 1   VIAFID ORCID Logo  ; Yang, Dawen 2 ; Qin, Yue 2 ; Wang, Yuhan 2 ; Li, Hongyi 3 ; Zhang, Yanlin 3 ; Zhang, Tingjun 4 

 School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China 
 State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China 
 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China 
 Key Laboratory of West China's Environmental Systems (MOE), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China 
Pages
657-673
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414419427
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.