Full text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr.

The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8.

Details

Title
Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 637 ka and the present
Author
Francke, Alexander 1   VIAFID ORCID Logo  ; Wagner, Bernd 1 ; Just, Janna 1 ; Leicher, Niklas 1   VIAFID ORCID Logo  ; Gromig, Raphael 1 ; Baumgarten, Henrike 2 ; Vogel, Hendrik 3   VIAFID ORCID Logo  ; Lacey, Jack H 4   VIAFID ORCID Logo  ; Sadori, Laura 5   VIAFID ORCID Logo  ; Wonik, Thomas 2 ; Leng, Melanie J 4 ; Zanchetta, Giovanni 6 ; Sulpizio, Roberto 7   VIAFID ORCID Logo  ; Giaccio, Biagio 8 

 Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany 
 Leibniz Institute for Applied Geophysics (LIAG), Hannover, Germany 
 Institute of Geological Sciences & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland 
 Centre for Environmental Geochemistry, School of Geography, University of Nottingham, Nottingham, UK; NERC Isotope Geosciences Facilities, British Geological Survey, Keyworth, Nottingham, UK 
 Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Rome, Italy 
 Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy 
 Dipartimento di Scienze della Terra e Geoambientali, University of Bari, Bari, Italy; Istituto per la Dinamica dei Processi Ambientali (IDPA) CNR, Milan, Italy 
 Istituto di Geologia Ambientale e Geoingegneria – CNR, Rome, Italy 
Pages
1179-1196
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414549353
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.