Full text

Turn on search term navigation

© 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4-(KH2SO4) and the dehydration of H2SO4 to SO3 (xKSO3) areKH2SO4=24×109 mol kg-1 andxKSO3 1.4 × 1010 at 288.8 ± 5 K.

Details

Title
Evaporation of sulfate aerosols at low relative humidity
Author
Tsagkogeorgas, Georgios 1 ; Roldin, Pontus 2   VIAFID ORCID Logo  ; Duplissy, Jonathan 3 ; Rondo, Linda 4 ; Tröstl, Jasmin 5 ; Slowik, Jay G 5 ; Ehrhart, Sebastian 6   VIAFID ORCID Logo  ; Franchin, Alessandro 7 ; Kürten, Andreas 4 ; Amorim, Antonio 8 ; Bianchi, Federico 7   VIAFID ORCID Logo  ; Kirkby, Jasper 9   VIAFID ORCID Logo  ; Petäjä, Tuukka 7   VIAFID ORCID Logo  ; Baltensperger, Urs 5 ; Boy, Michael 7 ; Curtius, Joachim 4   VIAFID ORCID Logo  ; Flagan, Richard C 10 ; Kulmala, Markku 3   VIAFID ORCID Logo  ; Donahue, Neil M 11   VIAFID ORCID Logo  ; Stratmann, Frank 1 

 Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany 
 Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland; Division of Nuclear Physics, Lund University, P.O. Box 118, 221 00 Lund, Sweden 
 Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland; Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland 
 Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany 
 Paul Scherrer Institute, 5232 Villigen, Switzerland 
 Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; now at: Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany 
 Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland 
 Fac. Ciencias & CENTRA, Universidade de Lisboa, Campo Grande, 1749–016 Lisbon, Portugal 
 Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; CERN, 1211 Geneva, Switzerland 
10  California Institute of Technology, Pasadena, CA 91125, USA 
11  Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA 
Pages
8923-8938
Publication year
2017
Publication date
2017
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414549641
Copyright
© 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.