Full Text

Turn on search term navigation

© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2 %, COA: 15.0 ± 3.4 %, OOA: 41.5 ± 5.7 %, BBOA: 29.3 ± 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.

Details

Title
ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers
Author
Fröhlich, R 1 ; Crenn, V 2 ; Setyan, A 3 ; Belis, C A 4 ; Canonaco, F 1 ; Favez, O 5 ; Riffault, V 3   VIAFID ORCID Logo  ; Slowik, J G 1 ; Aas, W 6 ; Aijälä, M 7 ; Alastuey, A 8   VIAFID ORCID Logo  ; Artiñano, B 9 ; Bonnaire, N 2 ; Bozzetti, C 1 ; Bressi, M 4 ; Carbone, C 10 ; Coz, E 9   VIAFID ORCID Logo  ; Croteau, P L 11 ; Cubison, M J 12 ; Esser-Gietl, J K 13 ; Green, D C 14 ; Gros, V 2 ; Heikkinen, L 7 ; Herrmann, H 15 ; Jayne, J T 11 ; Lunder, C R 6 ; Minguillón, M C 8   VIAFID ORCID Logo  ; Močnik, G 16   VIAFID ORCID Logo  ; O'Dowd, C D 17 ; Ovadnevaite, J 17 ; Petralia, E 18 ; Poulain, L 15   VIAFID ORCID Logo  ; Priestman, M 14 ; Ripoll, A 8 ; Sarda-Estève, R 2 ; Wiedensohler, A 15 ; Baltensperger, U 1 ; Sciare, J 19 ; Prévôt, A S H 1 

 Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland 
 Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CNRS-CEA-UVSQ, Gif-sur-Yvette, France 
 Ecole Nationale Supérieure des Mines de Douai, Département Sciences de l'Atmosphère et Génie de l'Environnement, Douai, France 
 European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (VA), Italy 
 INERIS, Verneuil-en-Halatte, France 
 NILU – Norwegian Institute for Air Research, Kjeller, Norway 
 Department of Physics, University of Helsinki, Helsinki, Finland 
 Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain 
 Centre for Energy, Environment and Technology Research (CIEMAT), Department of the Environment, Madrid, Spain 
10  Proambiente S.c.r.l., CNR Research Area, Bologna, Italy 
11  Aerodyne Research, Inc., Billerica, Massachusetts, USA 
12  TOFWERK AG, Thun, Switzerland 
13  Deutscher Wetterdienst, Meteorologisches Observatorium Hohenpeißenberg, Hohenpeißenberg, Germany 
14  Environmental Research Group, MRC-HPA Centre for Environment and Health, King's College London, London, UK 
15  Leibniz Institute for Tropospheric Research, Leipzig, Germany 
16  Aerosol d.o.o., Ljubljana, Slovenia 
17  School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, Galway, Ireland 
18  ENEA-National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy 
19  Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CNRS-CEA-UVSQ, Gif-sur-Yvette, France; The Cyprus Institute, Environment Energy and Water Research Center, Nicosia, Cyprus 
Pages
2555-2576
Publication year
2015
Publication date
2015
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414609340
Copyright
© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.