It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Semantic resources such as knowledge bases contains high-quality-structured knowledge and therefore require significant effort from domain experts. Using the resources to reinforce the information retrieval from the unstructured text may further exploit the potentials of such unstructured text resources and their curated knowledge.
Results
The paper proposes a novel method that uses a deep neural network model adopting the prior knowledge to improve performance in the automated extraction of biological semantic relations from the scientific literature. The model is based on a recurrent neural network combining the attention mechanism with the semantic resources, i.e., UniProt and BioModels. Our method is evaluated on the BioNLP and BioCreative corpus, a set of manually annotated biological text. The experiments demonstrate that the method outperforms the current state-of-the-art models, and the structured semantic information could improve the result of bio-text-mining.
Conclusion
The experiment results show that our approach can effectively make use of the external prior knowledge information and improve the performance in the protein-protein interaction extraction task. The method should be able to be generalized for other types of data, although it is validated on biomedical texts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer