Full text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3–C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

Details

Title
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
Author
Rose, Clémence 1 ; Chaumerliac, Nadine 1 ; Deguillaume, Laurent 1 ; Perroux, Hélène 1 ; Mouchel-Vallon, Camille 2   VIAFID ORCID Logo  ; Leriche, Maud 3 ; Patryl, Luc 4 ; Armand, Patrick 4 

 Université Clermont Auvergne, CNRS Laboratoire de Météorologie Physique, 63000 Clermont-Ferrand, France 
 Université Clermont Auvergne, CNRS Laboratoire de Météorologie Physique, 63000 Clermont-Ferrand, France; now at: National Center for Atmospheric Research, Boulder, Colorado, USA 
 Université de Toulouse, UPS, CNRS, Laboratoire d'Aérologie, 31400 Toulouse, France 
 CEA, DAM, DIF, 91297 Arpajon, France 
Pages
2225-2242
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414678469
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.