It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Colorectal cancer (CRC) is the fourth most deadly malignancy throughout the world. Extensive studies have shown that Krüppel-like factors (KLFs) play essential roles in cancer development. However, the function of KLF13 in CRC is unclear.
Methods
The Cancer Genome Atlas database was applied to analyze the expression of KLF13 in CRC and normal tissues. Lentivirus system was used to overexpress and to knock down KLF13. RT-qPCR and Western blot assays were performed to detect mRNA and protein expression. CCK-8, colony formation, cell cycle analysis and EdU staining were used to assess the in vitro function of KLF13 in CRC cells. Xenografter tumor growth was used to evaluate the in vivo effect of KLF13 in CRC. Cholesterol content was measured by indicated kit. Transcription activity was analyzed by luciferase activity measurement. ChIP-qPCR assay was performed to assess the interaction of KLF13 to HMGCS1 promoter.
Results
KLF13 was downregulated in CRC tissues based on the TCGA database and our RT-qPCR and Western blot results. Comparing with normal colorectal cells NCM460, the CRC cells HT-26, HCT116 and SW480 had reduced KLF13 expression. Functional experiments showed that KLF13 knockdown enhanced the proliferation and colony formation in HT-29 and HCT116 cells. Opposite results were observed in KLF13 overexpressed cells. Furthermore, KLF13 overexpression resulted in cell cycle arrest at G0/G1 phase, reduced EdU incorporation and suppressed tumor growth of HCT116 cells in nude mice. Mechanistically, KLF13 transcriptionally inhibited HMGCS1 and the cholesterol biosynthesis. Knockdown of HMGCS1 suppressed cholesterol biosynthesis and the proliferation of CRC cells with silenced KLF13. Furthermore, cholesterol biosynthesis inhibitor significantly retarded the colony growth in both cells.
Conclusions
Our study reveals that KLF13 acts as a tumor suppressor in CRC through negatively regulating HMGCS1-mediated cholesterol biosynthesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer